方法一:排列组合
#对于n=1数字列表{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}中的其他任意非0数也可以进行拼接操作,
一共可以新增9*9个答案。
n=2的合法数字:n=1时的答案 + 长度为2的数字个数(9*9个)= 10 + 81 = 91。
n=3时同理,只不过此时可以用拼接的数字减少为了8个,此时答案为10 + 9 * 9 + 9 * 9 * 8 = 739。
n=4时同理,只不过此时可以用拼接的数字减少为了7个,此时答案为10 + 9 * 9 + 9 * 9 * 8 + 9 * 9 * 8 * 7 = 5275
class Solution:
def countNumbersWithUniqueDigit(self,n:int)->int:
if n==0:
return 1
if n==1:
return 10
res,cur=10,9
for i in range(n-1):
cur*=9-i
res+=cur
return res
if __name__=='__main__':
a=Solution()
print(a.countNumbersWithUniqueDigit(5))
#时间复杂度:O(n)。仅使用一个循环。
空间复杂度:O(1)。仅使用常数空间。
方法二:动态规划
class Solution:
def countNumbersUniqueDigits(self, n: int) -> int:
counts = [9, 9, 8, 7, 6, 5, 4, 3, 2, 1]
res, product = 1, 1
for i in range(0, min(n, 10)):
product *= counts[i]
res += product
return res
if __name__ == '__main__':
test = Solution()
print(test.countNumbersUniqueDigits(5))
将数组转化成列表
import numpy as np
counts=np.arange(9,0,-1)#左闭右开[9 8 7 6 5 4 3 2 1]
counts1=counts.tolist()#重新接收
#列表头部插入元素
counts1.insert(0,9)#索引 元素