2025-arXiv-FinSphere: 一个配备有基于实时数据库的定量工具的对话式股票分析智能体

arXiv | https://arxiv.org/abs/2501.12399

50 对 Stocksis 数据集 | https://anonymous.4open.science/r/Stocksis-BD25

摘要:

当前的大语言模型(LLMs)在股票分析方面面临两个关键限制:缺乏深度分析能力,这阻碍了它们生成专业级洞察的能力,以及缺乏客观评估指标来评估股票分析报告的质量。为应对这些挑战,本文引入了FinSphere 这一对话型股票分析智能体,并提出了三项主要贡献:Stocksis,由行业专家策划的数据集,旨在提升 LLMs 的股票分析能力;AnalyScore,一种系统性的评估框架,用于评估股票分析报告的质量;FinSphere,一种能够根据用户查询生成高质量股票分析报告的人工智能智能体。实验结果表明,即使在增强实时数据访问和少量示例指导的情况下,FinSphere 的表现也优于通用型和领域特定型的LLMs,以及现有的基于智能体的系统。

一、引言

大语言模型(LLMs)在理解和处理自然语言方面展现了卓越的能力,并且其影响力已扩展至金融领域。通过利用其语言理解能力,这些模型在各种金融应用中表现出色,包括情感分析从非结构化金融文本中提取信息。金融特定的LLMs,如 FinBERTBloombergGPTPIXIU的出现,进一步增强了有效处理金融数据的能力。随着 LLM 技术的不断演进,人们对其处理更复杂金融任务(特别是在股票分析方面)的期望越来越高,导致了工具增强型智能体的出现,这些代理结合了 LLMs 的语言能力与专门的金融工具,标志着自动化金融分析的一个重要飞跃。

然而,LLMs 继续面临挑战,即难以利用这些工具的输出生成高质量的分析结果。两个主要挑战是缺乏专门的数据集来微调 LLMs 的分析能力,以及缺乏系统性的评估方法来量化其在股票分析中的性能。此外ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值