因为在做GAN训练的时候,我们经常遇到两个问题:真实数据不足,训练经常崩溃。
所以我设想了一个GAN赛马机制:
一个鉴别器和三个生成器
鉴别器A,不学习,不升级,只用真实的历史数据(缺点就是数据有限)。
另外有3个不同的生成器BCD,不停地学习和升级。
先由鉴别器A去出考题,BCD参加考试,优胜者B作为课代表,课代表B生成虚拟数据,A拿着课代表的虚拟数据作为考题,去训练测试CD,直到CD的水平接近于B,对抗达到均衡。 然后由鉴别器A使用真实数据,去训练测试BCD,直到BCD中有一个胜出,打破对抗均衡。
BCD中的最新胜出者,担任课代表生成虚拟数据,A拿着课代表的虚拟数据训练测试,如此往复。
我认为这个赛马机制的优势在于适用于市面上大多数AI训练,并且不再拘泥于传统GAN追求二者纳什均衡的训练模式,而是转化成多个网络整体能力共同进化。
感谢阅读!如果您有好的灵感或者认为这个方法存在纰漏,恳请您在下方留言指教,我将不胜感激!