会员分析案例

这篇博客主要探讨了零售会员分析,包括会员存量增量、等级分布、占比及地区店均数量分析,同时深入讲解了RFM会员价值度模型的业务说明、代码实现、打分方法以及结果可视化,强调了数据可视化在分析过程中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今日重点

1 零售会员分析

透视表/分组聚合

数据可视化

2 RFM 会员价值度分析

分组聚合分析

数据可视化

业务问题

1 零售会员分析

1.1 会员存量增量分析

custom_info.pivot_table(index='注册年月',values='会员卡号',aggfunc='count')
month_count = custom_info.groupby('注册年月')[['会员卡号']].count()
month_count.columns = ['月会员增量']
month_count['会员存量'] = month_count['月会员增量'].cumsum()

数据可视化

import matplotlib.pyplot as plt
month_count['月会员增量'].iloc[1:].plot(figsize = (16,8),color = 'red',secondary_y=True,ylabel = '月会员增量')
month_count['会员存量'].iloc[1:].plot.bar(color = 'gray',fontsize = 16)
plt.title('会员增量存量分析',fontsize=20)
plt.show()

同一个dataframe连着两次plot 图会画在同一个框中

secondary_y=True 指定副坐标轴

fontsize 调整字体大小

legend 添加图例

1.2 会员增量等级分布

透视表和分组聚合实际上功能相同

custom_info.groupby(['注册年月','会员等级'])['会员卡号'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值