怒斩腾讯和阿里的Offer,新同事不讲武德,乱写-SQL-偷袭我

本文介绍了MySQL在排序、子查询和条件过滤方面的性能优化技巧。通过实例展示了如何利用索引避免全表扫描、优化混合排序、改进EXISTS语句以及提前缩小数据范围。此外,还探讨了条件下推的重要性,以及如何通过重写SQL减少不必要的计算。
摘要由CSDN通过智能技术生成

| 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |
±—±------------±------±-----±--------------±------±--------±------±-----±----------------------------------------------------+

#4、混合排序
MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

SELECT *
FROM my_order o
INNER JOIN my_appraise a ON a.orderid = o.id
ORDER BY a.is_reply ASC,
a.appraise_time DESC
LIMIT 0, 20

执行计划显示为全表扫描:

±—±------------±------±-------±------------±--------±--------±--------------±--------±+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra
±—±------------±------±-------±------------±--------±--------±--------------±--------±+
| 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort |
| 1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122 | a.orderid | 1 | NULL |
±—±------------±------±-------±--------±--------±--------±----------------±--------±+

由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

SELECT *
FROM ((SELECT *
FROM my_order o
INNER JOIN my_appraise a
ON a.orderid = o.id
AND is_reply = 0
ORDER BY appraise_time DESC
LIMIT 0, 20)
UNION ALL
(SELECT *
FROM my_order o
INNER JOIN my_appraise a
ON a.orderid = o.id
AND is_reply = 1
ORDER BY appraise_time DESC
LIMIT 0, 20)) t
ORDER BY is_reply ASC,
appraisetime DESC
LIMIT 20;

#5、EXISTS语句
MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:

SELECT *
FROM my_neighbor n
LEFT JOIN my_neighbor_apply sra
ON n.id = sra.neighbor_id
AND sra.user_id = ‘xxx’
WHERE n.topic_status < 4
AND EXISTS(SELECT 1
FROM message_info m
WHERE n.id = m.neighbor_id
AND m.inuser = ‘xxx’)
AND n.topic_type <> 5

执行计划为:

±—±-------------------±------±-----±----±-----------------------------------------±--------±------±--------+ -----+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
±—±-------------------±------±-----+ -----±-----------------------------------------±--------±------±--------+ -----+
| 1 | PRIMARY | n | ALL | | NULL | NULL | NULL | 1086041 | Using where |
| 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where |
| 2 | DEPENDENT SUBQUERY | m | ref | | idx_message_info | 122 | const | 1 | Using index condition; Using where |
±—±-------------------±------±-----+ -----±-----------------------------------------±--------±------±--------+ -----+

去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

SELECT *
FROM my_neighbor n
INNER JOIN message_info m
ON n.id = m.neighbor_id
AND m.inuser = ‘xxx’
LEFT JOIN my_neighbor_apply sra
ON n.id = sra.neighbor_id
AND sra.user_id = ‘xxx’
WHERE n.topic_status < 4
AND n.topic_type <> 5

新的执行计划:

±—±------------±------±-------+ -----±-----------------------------------------±--------+ -----±-----+ -----+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
±—±------------±------±-------+ -----±-----------------------------------------±--------+ -----±-----+ -----+
| 1 | SIMPLE | m | ref | | idx_message_info | 122 | const | 1 | Using index condition |
| 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where |
| 1 | SIMPLE | sra | ref | | idx_user_id | 123 | const | 1 | Using where |
±—±------------±------±-------+ -----±-----------------------------------------±--------+ -----±-----+ -----+

#6、条件下推
外部查询条件不能够下推到复杂的视图或子查询的情况有:

1、聚合子查询;2、含有 LIMIT 的子查询;3、UNION 或 UNION ALL 子查询;4、输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT *
FROM (SELECT target,
Count(*)
FROM operation
GROUP BY target) t
WHERE target = ‘rm-xxxx’

±—±------------±-----------±------±--------------±------------±--------±------±-----±------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
±—±------------±-----------±------±--------------±------------±--------±------±-----±------------+
| 1 | PRIMARY | | ref | <auto_key0> | <auto_key0> | 514 | const | 2 | Using where |
| 2 | DERIVED | operation | index | idx_4 | idx_4 | 519 | NULL | 20 | Using index |
±—±------------±-----------±------±--------------±------------±--------±------±-----±------------+

确定从语义上查询条件可以直接下推后,重写如下:

SELECT target,
Count(*)
FROM operation
WHERE target = ‘rm-xxxx’
GROUP BY target

执行计划变为:

±—±------------±----------±-----±--------------±------±--------±------±-----±-------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
±—±------------±----------±-----±--------------±------±--------±------±-----±-------------------+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
±—±------------±----------±-----±--------------±------±--------±------±-----±-------------------+

关于 MySQL 外部条件不能下推的详细解释说明请参考以前文章:MySQL · 性能优化 · 条件下推到物化表 

#7、提前缩小范围
先上初始 SQL 语句:

SELECT *
FROM my_order o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

±—±------------±------±-------±--------------±--------±--------±----------------±-------±---------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
±—±------------±------±-------±--------------±--------±--------±----------------±-------±---------------------------------------------------+
| 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |
±—±------------±------±-------±--------------±--------±--------±----------------±-------±---------------------------------------------------+

由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。

SELECT *
FROM (
SELECT *
FROM my_order o
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15
) o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
ORDER BY o.selltime DESC
limit 0, 15

再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。

±—±------------±-----------±-------±--------------±--------±--------±------±-------±---------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
±—±------------±-----------±-------±--------------±--------±--------±------±-------±---------------------------------------------------+
| 1 | PRIMARY | | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary; Using filesort |
| 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |
| 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where |
±—±------------±-----------±-------±--------------±--------±--------±------±-------±---------------------------------------------------+

#8、中间结果集下推
再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = ‘1234567’
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = ‘1234567’
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = ‘1234567’
ORDER BY salecode limit 20) a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:

WITH a AS

读者福利

分享一份自己整理好的Java面试手册,还有一些面试题pdf

领取方式;关注+点赞后,戳这里即可免费领取

不要停下自己学习的脚步

字节跳动的面试分享,为了拿下这个offer鬼知道我经历了什么

字节跳动的面试分享,为了拿下这个offer鬼知道我经历了什么

写:

WITH a AS


# **读者福利**

分享一份自己整理好的Java面试手册,还有一些面试题pdf

**[领取方式;关注+点赞后,戳这里即可免费领取](https://gitee.com/vip204888/java-p7)**

**不要停下自己学习的脚步**

[外链图片转存中...(img-qzGk4AeJ-1628231646127)]

[外链图片转存中...(img-is2LCR2L-1628231646130)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值