AnimateDiff采用控制模块来影响StableDiffusion模型,通过大量短视频剪辑的训练,使其能够调整图像生成过程,生成一系列与训练视频剪辑相似的图像。与传统的SD模型训练方式不同,AnimateDiff通过大量短视频的训练来提高图像之间的连续性,使得生成的每一张图像都能经过AnimateDiff微调,最终拼接成高质量短视频。
可以使用colab体验(https://colab.research.google.com/github/camenduru/AnimateDiff-
colab/blob/main/AnimateDiff_colab.ipynb )。也可以本地sd-webui安装使用。下面介绍sd-
webui安装方式。
AnimateDiff插件是一个可以让你在WebUI上方便地生成动画GIF的扩展,它支持多种运动模块(Motion
Module,MM),包括官方的v2版本,以及LoRA和ControlNet等创新的技术。AnimateDiff插件的主要功能和使用方法:
-
安装和准备 :要使用AnimateDiff插件,需要先更新WebUI到v1.6.0 ,然后通过链接安装sd-webui-animatediff(https://github.com/continue-revolution/sd-webui-animatediff)这个插件扩展。同时还需要下载模型的ckpt文件,并放在stable-diffusion-webui/extensions/sd-webui-animatediff/model/目录下。可以在huggingface代码库https://huggingface.co/guoyww/animatediff/tree/main中找到可用的ckpt模型和LoRA模块。注意:mm_sd_v15_v2.ckpt仅支持SD1.5模型,如果要使用SDXL需要下载mm_sdxl_v10_beta.ckpt模型。
-
生成动画GIF :在txt2img或img2img中使用AnimateDiff插件来生成动画GIF。选择一个SDM的检查点,写下绘图prompt,设置图片的宽度和高度等参数。如果想一次生成多个GIF,可以修改批次数量,而不是批次大小。然后需要启用AnimateDiff扩展,设置每个参数,然后点击Generate。就可以在输出画廊中看到输出的GIF了。也可以在stable-diffusion-webui/outputs/{txt2img或img2img}-images/AnimateDiff/{yy-mm-dd}中访问GIF输出。可以在stable-diffusion-webui/outputs/{txt2img或img2img}-images/{yy-mm-dd}中访问图片要在Settings/AnimateDiff中选择保存每次生成的帧到目录。相关web-ui参数设置:https://github.com/continue-revolution/sd-webui-animatediff?tab=readme-ov-file#webui-parameters
-
使用API :可以通过API来使用AnimateDiff插件。API会返回一个base64格式的视频。在format中,PNG表示只保存帧到本地文件系统,而不返回所有的帧。如果想让API返回所有的帧,请在format列表中添加Frame。关于API最新的参数:https://github.com/continue-revolution/sd-webui-animatediff?tab=readme-ov-file#api。
-
使用LoRA和ControlNet :AnimateDiff插件支持LoRA和ControlNet这两种创新的技术。LoRA是一种基于局部重建的运动模块,它可以生成更清晰和更连贯的动画。ControlNet是一种基于控制点的运动模块,它可以通过拖动控制点来改变图片的形状和方向。下载LoRA文件放置
stable-diffusion-webui/models/Lora
目录,并在prompt 增加<lora:v2_lora_PanDown:0.8>。
在SD-Web-UI扩展安装 :
https://github.com/continue-revolution/sd-webui-animatediff.git
* 1
下载模型:
https://huggingface.co/guoyww/animatediff
* 1
-
注意:模型放置目录:stable-diffusion-webui/extensions/sd-webui-animatediff/model/。mm_sd_v15_v2.ckpt仅支持SD1.5模型,如果要使用SDXL需要下载mm_sdxl_v10_beta.ckpt模型。
-
下载LoRA文件放置目录stable-diffusion-webui/models/Lora
安装重启webui:
效果体验
写在最后
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。