ComfyUI | 如何AI放大照片不模糊?推荐一个冷门的图片放大模型

分享一个我自己一直在用但比较冷门的图片放大模型,这个模型国内用的不多,但真的很好用。它能够把一张图片几乎无损地进行放大,而且重绘幅度很低,尽可能保持原汁原味。

不卖关子,模型名称:4xNomos8kSCHAT-L

演示下效果,左边放大后,右边原图:

img

这个模型Google可以搜索到,懒得搜也可以直接在下方获取。
这份完整版的模型资料包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

(使用这个模型需要你有一台配置还可以的电脑或者云电脑,并且掌握ComfyUI的基础操作,如果暂时没有的话,只能先收藏将来再战了。)


很多人都喜欢用SUPIR做图片放大,当然SUPIR也不错。

但它的问题我认为也挺明显。

第一,大图爆显存。

原图比较大或者放大倍数大都容易爆显存。

300万左右像素的照片放大一下,这个需求其实不过分啊。

但作为4090用户,我可以证明,这个事情消费级显卡真不太好搞。

img

第二,SUPIR要用到两个模型。

一个SUPIR模型,一个SDXL模型。

img

有这个SDXL模型就意味着它会重采样,就容易引入不必要的变量。

哪怕你只用画质prompt,s_noise调很低,它重绘了就是重绘了。

比如说我用大家在SUPIR上最常用的Juggernaut模型,只用画质提示词,放大这张妹子照片:

img

放大细节,这脸前面还有后面墙上的头发是怎么回事啊:

img

把SDXL模型换掉会有不一样的效果,比如我其他参数不动,换成LEOSAM HelloWorld新世界模型,这个头发问题就没了,但因为HelloWorld这个模型人像自带磨皮,反而看起来会有点糊。

img

多放几张。

Juggernaut:

img

HelloWorld:

imgJuggernaut:

img

HelloWorld:

img

(SUPIR其实挺适合老照片修复的)

感受很明显吧。

受SDXL模型影响很大。

而且,一旦涉及到商用,多一个SDXL模型会让问题复杂很多。


这就是4xNomos8k的好了。

就一个放大模型,独立把事儿解决。

放大4倍,就这么简单:

img

可以商用。

img

而且尽可能忠实于原图。

po一些作者在reddit上发表观点(Google机翻凑合看):

img

img

img

所以这个放大模型非常适合对实拍照片进行放大(当然破损老照片除外)。

比如说刚才放大的这张世界名照:

img

来看看原图和放大后的尺寸:

img

从不到300w像素直接放大到接近4500w像素。

这还是原图小,实际放大到1.5亿像素以上也完全没有问题,也不会爆显存。

img

这个尺寸的图片无法上传,直接截图细节吧,左边是放大后,右边是原图:

img

img

再找个原图够小的,比如这张:

img

原图512*350,这都能算糊了吧?怎么不su…好了我把梗收回去。

img

放大之后:

img

细节:

这次把对比节点反过来接一下,右边是放大后的,注意痣的位置,完全没有变化,完全忠实于原图。

img

并且注意一下衣服的细节,都足够还原:

img

我们再用最熟悉的4x-UltraSharp来一次。

img

放大之后:

img

下图左4x-UltraSharp,右4xNomos8kSCHAT-L,

UltraSharp自带锐化,乍一看更清晰,然而细看不够自然。

img

尤其是细节上,UltraSharp明显失真。

4x-UltraSharp毛衣细节⬇️

img

4xNomos8kSCHAT-L毛衣细节⬇️

img

4x-UltraSharp人物毛发⬇️

img

4xNomos8kSCHAT-L人物毛发⬇️

img

如果你说,我就是希望能有一个生图模型重绘一些细节出来,我也不准备商用,也不介意跟原图的完全一致,就是想重采样放大获得更好的图片品质。

当然也没有问题。

我放大模型还用4xNomos8kSCHAT-L,重绘模型给你换成fp16的flux.1 dev怎么样?

img

这个加强足够吧。

img

皮肤和嘴唇的细节:

flux重绘+放大⬇️

img

原图放大⬇️

img

原图⬇️

img

眉毛和头发的细节:

flux重绘+放大⬇️

img

原图放大⬇️

img

原图⬇️

img

模型文件放到models\upscale_models文件夹中。
这份完整版的模型资料包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值