- 博客(1801)
- 收藏
- 关注
原创 RAG切分全错?答案之所以是垃圾,就卡在“语义”这一步!RAGFlow源码解密:General模式避坑指南!
在 RAGFlow 的多文档解析体系中,HTML、JSON 与 DOC 三类文档具有天然的结构化特性。 相较于 PDF、Markdown 等复杂输入,它们的语义边界更清晰、噪声更少、解析路径更短。
2025-11-26 10:45:39
492
原创 我,大厂AI架构师,搞砸3个Agent项目后才明白:落地第一要义是“做减法”!
一句话结论:不要沉迷“更大的上下文、更全的工具、更复杂的流程”。Agent 落地的核心是做减法——只保留完成当前任务“必要且充分”的信息、工具与步骤。
2025-11-26 10:43:44
445
原创 Agent开发新革命:你的代码执行方式已经OUT了!MCP架构革新带来98.7%效率提升,高手早已偷偷切换!
如果你在构建 Agent 或处理上下文工程,这是一篇必读的博客。Anthropic 虽然封锁国内厂商不允许使用他们的 Claude 模型,但不得不说,他们在 Agent 方面的实践都值得借鉴。
2025-11-26 10:42:03
453
原创 深度解析Anthropic神文:COT、TAT还是新架构?一文读懂Token暴降98.7%背后的秘密!
Agent目前最大瓶颈是上下文窗口,当Agent需要连接成百上千个外部工具时,海量的工具定义和中间数据结果会迅速撑爆上下文,导致成本飙升、效率骤降
2025-11-26 10:40:36
758
原创 告别RAG“幻觉”!PathRAG手把手教你构建“逻辑链路”,让你的AI应用秒变学霸,用户满意度翻倍!
近日,CCF A类国际会议AAAI 2026放榜。**北邮GAMMA LAB实验室的PathRAG工作被AAAI 2026录用**,下面是论文详细介绍:
2025-11-26 10:37:51
126
原创 想拿高薪Agent岗?必须理解Claude的“上下文高效”思维,这比你会写Prompt重要100倍!
当智能体直接调用工具时,每次调用的定义与结果都会占用上下文窗口。如果让智能体自己“写代码”来调用工具,它的扩展性和效率就能显著提升。Anthropic 的最新博客《通过代码执行使用 MCP:让智能体更高效(Code execution with MCP: Building more efficient agents)》介绍了如何利用 MCP 实现这一点。
2025-11-26 10:37:01
160
原创 20251126_103446_测试领域的AI_Agent革命:智能质量保障的新范式
现代AI测试Agent已经发展出多层次的智能架构,其核心组件包括:
2025-11-26 10:35:59
539
原创 “数字生命”的创世蓝图!从原理到实战,手把手教你构建会思考的智能体框架!
随着大语言模型技术的突破性进展,智能体(Agent)应用开发已成为人工智能领域的重要方向。智能体作为能够自主决策并执行任务的AI系统,正在各个领域展现出巨大潜力。然而,从零开始构建复杂的智能体系统面临诸多挑战:多智能体协作、状态管理、工具集成、错误处理等问题往往让开发者陷入繁琐的底层实现细节中。
2025-11-25 17:16:35
551
原创 终结AI“误诊”!万字长文深度剖析:如何为医疗Agent打造一个永不疲倦、绝对理性的“超级大脑”?
在过去,我们熟悉的医疗AI大多是“单点工具”——比如一个能看X光片的模型,或者一个能回答医学常识的Chatbot。但现在,随着大语言模型(LLM)的进化,一种全新的形态诞生了: **医疗智能体(Medical AI Agents)** 。
2025-11-25 16:07:25
210
原创 打破AI的信息茧房!LangChain Tool工具调用深度解析,让它实时查天气、搜股票、发邮件!
虽然大模型具备强大的语言理解和生成能力,但它本质上是静态的、不可交互的。比如:
2025-11-25 13:59:00
657
原创 别让VLM只会“纸上谈兵”!VLA才是赋予它“行动力”的关键,揭秘其核心继承机制!
近年来,机器人领域流行一种思路:把 VLM 改造成能控制机器人的 VLA。想法很美好——VLM 在互联网上看过海量图片和文本,拥有丰富的"世界知识",如果能把这些知识迁移给机器人,就能让机器人更智能、更通用。
2025-11-25 13:56:53
1278
原创 别再死磕传统RAG了!它只会“一问一答”,FastMCP带你玩转Agentic RAG,让AI学会“主动思考”!
然而,传统 RAG 存在一定局限:检索策略和内容通常是**静态预设**的,缺乏根据具体问题动态调整的能力。当遇到复杂问题时,单一的检索和生成可能无法满足需求,例如需要多轮检索、跨数据源查询或调用外部工具(如数据库查询、计算等)。此外,传统 RAG 对检索结果的利用较为被动,模型往往只能一次性使用检索到的内容,缺乏对检索过程的反馈和优化。
2025-11-25 13:55:45
643
原创 拉开你和“调包侠”的差距!当别人还在用LangChain写简单Agent,你已在构建2.0“大脑”!
本文整理 Agents 2.0 的核心思想,并结合 LangChain 的 Deep Agents 最新能力与生态动态,帮助理解从“浅层循环”到“深度智能”的范式迁移。
2025-11-25 13:53:45
448
原创 AI的“大一统”理论来了?何恺明新作直指核心:扩散模型+Transformer,或将终结所有争论!
何恺明团队又出新作,这次依旧是**返璞归真**,提出 “Just image Transformers”(JiT),让扩散模型直接预测干净图像,而非噪声或含噪量,这给高维自然数据生成提供了更简洁高效的范式。
2025-11-25 13:52:23
452
原创 别再让你的RAG“又聋又瞎”了!全模态知识库开源项目调研,让它“眼耳”齐开!
随着多模态大模型技术发展,支持文本、图片、音频、视频等全模态检索的 RAG 系统已成为企业级知识管理的关键需求。本报告基于 2025 年最新开源项目调研,筛选出 5 个具备全模态处理能力、功能强大且架构先进的 RAG 知识库框架:
2025-11-25 13:51:02
712
原创 废掉一个前端最快的方式:让他只会手动写UI!我用Gemini 3 Pro,已经实现“UI自由”了!
最近我在做那个给孩子用的背诵 App。一开始,我在 Cursor 里还是用之前流传的老方法,用HTML+Tailwind CSS的方式,来生成原型。我试了Claude Sonnet4.5、GPT Codex、Gemini2.5pro。不是说不能用吧,但是总是感觉差点儿意思,咋一看可以。但是作为产品细扣的话,总是有问题。要不是添加了很多冗余元素,要不是风格很差。
2025-11-24 16:30:10
576
原创 0分钟搭建私有ChatGPT!Langchain-Chatchat,让本地知识库问答像装软件一样简单!
在大模型技术快速发展的今天,如何实现基于本地知识库的高效问答,同时保证数据隐私与离线可用,成为许多开发者和企业关注的焦点。今天为大家介绍一款开源、可离线部署的RAG与Agent应用项目——Langchain-Chatchat,它或许能满足你的需求。
2025-11-24 16:28:32
713
原创 40分钟干完动画团队一周的活!我只用本地Ollama+ComfyUI+Sora 2,分镜生成进入“光速时代”!
40分钟完成一整集分镜”——这句话自从上篇文章发布后,收获了大量点赞,也收到了不少“这根本不可能”“别骗钱”等争议。
2025-11-24 16:26:38
586
原创 20251124_161637_利用cursor快速上手学习langchain,小白借助AI
今天介绍我学习并上手langchain的方法,如何借助AI编程工具,帮我快速上手langchain,学习langchain源码。
2025-11-24 16:25:31
498
原创 多智能体应用,看这篇就够了!一个真实案例,带你吃透协作、通信与决策全流程!
过去三年间,技术范式、产品范式和商业模式都发生了关键转变。一个是技术范式的转移。过去以“预训练+SFT(监督微调)”为主,强调高质量数据标注与人工指令优化,让模型学习并模仿人类提供的标准答案。而现在,新范式开始转向“预训练+RL(强化学习)”的闭环方式,基于预训练构建的模型世界观为其注入价值观和方法论,通过人类反馈或自动化的奖励信号来实现自我优化。
2025-11-24 16:04:52
454
原创 新药上市慢如蜗牛?AI Agent来加速!一文读懂2025年制药注册的“六脉神剑”,效率提升百倍!
组合:Denario(多代理科研)+Search-o1(2501.05366,RAG 检索)Denario 负责生成“原料药+参比+专利”框架,Search-o1 实时抓取药审中心、PubMed 溶出/BE 数据并注入对应段落;两模块经简单脚本串联即可在 30 min 内输出一份含最新文献的 NMPA 格式调研报告,解决人工检索遗漏、更新慢痛点。
2025-11-24 16:02:57
527
原创 LLM推理引擎终极宝典!Transformers、llama.cpp、vLLM三大巨头横评,看完直接开干!
为了系统性地解答这些疑问,本篇将不再局限于模型本身,而是深入聊聊大模型的“发动机”——**推理引擎**。在 LLM 的工程化落地中,模型权重仅仅是“静态的代码”,而推理引擎则是负责加载、调度并执行这些代码的“运行时环境(Runtime)”。
2025-11-24 16:01:39
567
原创 你的AI还是个“应声虫”?三步教会它自主思考、规划决策,从聊天机器人进化为超级员工!
**上几期我们介绍了AI Agent的基础概念、核心原理与基本应用。本期我们将动手实现一个完整的模型应用流程,涵盖从**任务决策**、**计划生成**到**ReAct Agent执行**的每一个环节。
2025-11-24 16:00:40
659
原创 多智能体协作一团糟?根源在于不懂A2A!一文讲清通信、协商与任务分配的核心机制!
顾名思义,`LangChain`其核心概念就是`Chain`。 `Chain`翻译成中文就是“链”。用于将多个组件(提示模板、model模型、记忆、工具等)连接起来,形成可复用的工作流,完成复杂的任务。比如我们刚刚实现的问答流程: 用户输入一个问题 --> 发送给大模型 --> 大模型进行推理 --> 将推理结果返回给用户。这个流程就是一个链。
2025-11-24 15:57:13
861
原创 【万字长文】RAG已死,CAG当立!从原理到实战,彻底终结AI应用的“无用功”时代!
朋友在一家互联网公司做数据分析师,每天要处理几百个业务方的问题。最让他头疼的是,那些关于数据口径、指标定义的问题,十有八九都是重复的。
2025-11-23 11:15:00
1448
原创 我赌你只用了Dify 10%的功能!企业版和社区版的真正差距,藏在这3个细节里!
摘要:目前很多AI开发者已经学会使用dify进行AI应用的配置了,但是其实Dify 提供了社区版和企业版两个版本,分别面向不同使用场景和需求。
2025-11-23 10:30:00
1643
原创 保姆级教程!从0到1复刻天猫AI测试全流程,技术选型+架构图+避坑指南!
传统测试工作链条主要包括五大核心阶段:**需求解析 → 用例生成 → 测试数据构造 → 执行验证 → 对比校验**AI的引入目标:通过自然语言理解和大模型驱动,实现**全流程自动化**,提高效率、降低人为失误、形成可复用知识资产。
2025-11-23 08:30:00
748
原创 AI大模型入门到精通,收藏这篇就够了!深度解析全球最大游戏UP主的转型之路!
全球最大的游戏主播,居然开始转型搞 AI 了,没过半天就获得了 100 万播放量。上周末,PewDiePie 久违地发布了新视频,出乎人们预料的是,内容是在教你训练 AI 大模型。在这个题为《STOP. Using AI Right now》(停。现在使用 AI)的新视频中,他解释了自己如何从零开始,通过添加搜索、记忆、RAG 和音频输出等功能,创建出个人专属的 ChatGPT 风格用户界面。他还自己组装了一套硬件系统,共计 10 块英伟达 GPU,使用参数量从 700 亿到 2450 亿不等的
2025-11-22 16:00:52
544
原创 万字长文深度拆解!Google的AI智能体L0-L4,不仅是技术,更是未来十年的AI世界观!
白皮书将智能体定义为一个完整的、以目标为导向的应用程序 。它不仅仅是一个模型,而是由四个关键部分组成的完整系统 :
2025-11-22 10:34:26
663
原创 醒醒!别再当“代码民工”了!AI Agent正在清退这种工作模式,再不改变就晚了!
你是否还认为AI编程只是一个能自动补全代码的“高级插件”?是时候刷新认知了。过去的二十年里,软件开发的主旋律是“工具增强”:IDE 更智能了、代码提示更精准了、CI/CD 更自动了。但无论工具多先进,开发模式始终没变——人依然是执行中心。
2025-11-22 10:33:19
1037
原创 保姆级教程!从Prompt设计到思维链(CoT),我如何把一个Agent调教成“全能助手”
最近几周,我们在 AITest 中增加了提速、归因等 Agent,目标是通过 AI 帮助测试人员提升效率、辅助决策。开发这些 Agent 是非常快的,我们的第一版几乎只花了一两天的时间就完成了。但是当我们开始真正评测这些 Agent,并且开始效果调优时,我们遇到了很多问题。 考虑到其他正在开发 Agent 时也会遇到类似问题,因此写这篇分享文档,希望能提供其他的开发者一些可借鉴的经验。
2025-11-22 10:32:16
779
原创 【万字长文】Dify Agent天花板教程:吃透“三模双驱”,让你从“调包侠”逆袭成AI架构师!
今天,我们来深入聊聊在Dify工作流中扮演着“大脑”角色的**Agent节点**,特别是它那几种不同的工具调用策略。你是否曾困惑于Function Calling、ReAct和MCP这些术语?它们之间到底有何不同?选错了策略,会不会让你的AI应用变得“笨手笨脚”?
2025-11-22 10:31:12
742
原创 历史性一刻!Gemini 3问世,全人类正式踏上AGI的“最后一级台阶”!
Google发布重大更新Gemini 3和pro版本,又把AGI向前推了一步。
2025-11-21 11:49:51
641
原创 警告!你的RAG还在“胡说八道”?别再只顾检索了,训练与优化才是“灵魂”!
在分析 Modular RAG 架构和 RAG 设计模式时,我们可以看到,这些系统的各个模块紧密依赖于模型的能力,而这些模块的表现直接影响到整个系统的效果。比如,向量块的优化需要理解文本中不同词汇和句子之间的语义关系,确保在切分文本时保留关键的语义信息;查询转换模块则需要把用户用自然语言提问的查询,转化成系统可以用来检索的查询形式,确保系统能找到最相关的文档。
2025-11-21 11:49:01
856
原创 “只答准确率,你就输了!”面试官眼中的动态RAG数据质量评估,究竟有多深?
昨天更新“动态增量 RAG 如何保证召回准度”那篇文章之后,有学员在群里又问了一个延伸问题:**“动态 RAG 数据那么杂、来源又不稳定,那怎么评估数据质量? 总不能上线就靠感觉吧?”**这个提得非常关键。
2025-11-21 11:47:27
769
原创 受够了LangChain的“坑”?我手写框架Mofy,这份避坑指南让你少走100个弯!
**为什么不选择成熟框架?** 研究了多种AI Agent开发框架例如Dify、Coze、Langchain、Spring AI等等。看多了就手痒痒,于是趁空闲时间筹措一个AI Agent开发框架Mofy(魔法)。代码已经上传Github,暂无法确定可以迭代出一个什么妖怪出来。下面把MVP的思路讲讲。
2025-11-21 11:45:12
833
原创 万字长文,彻底讲透RAG!从原理到架构,揭秘AI从“胡说八道”到“言之有据”的底层逻辑。
2025年11月,某医疗AI在回答用户关于糖尿病用药的问题时,竟编造出不存在的药物副作用,导致患者错误停药!这不是个例,AI“幻觉”问题已成为行业痛点。但与此同时,采用RAG技术的智能客服系统准确率却提升了40%。
2025-11-21 11:38:21
686
原创 (清华RAG神器)别再手写了!UltraRAG 2.0开源,几十行代码直接抄!
当检索增强生成(RAG)技术从"检索+生成"的简单拼接,进化到需要融合自适应知识组织、多轮推理和动态检索的复杂系统时,科研人员却常常陷入冗长的工程实现泥潭。
2025-11-21 11:36:31
563
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅