- 博客(2223)
- 收藏
- 关注
原创 Agent 设计模式全攻略(非常详细),20个大厂方案从入门到精通,收藏这一篇就够了!
很多产品经理一听 Agent 就觉得是 AI 加强版,随便套个 Chatbot 就算完事。但你翻开字节、阿里、腾讯的技术博客,会发现他们讲的 Agent 和你理解的完全不是一个东西。大厂的 Agent 不是一个对话框,而是一套复杂的任务执行系统,核心在于规划、调度、验证。
2026-02-15 19:58:26
941
原创 工业设备智能诊断系统实战全攻略(非常详细),LangGraph+MCP+Chainlit从入门到精通,收藏这一篇就够了!
在工业4.0时代,设备故障诊断已经从被动响应转向主动预警和智能决策。传统的工业设备维护模式往往依赖于人工经验和定期检查,这种方式不仅效率低下,而且难以应对复杂多变的设备故障场景。本文将深入介绍一个基于LangGraph、Model Context Protocol (MCP) 和Chainlit构建的工业设备智能诊断系统,详细阐述其架构设计、核心模块实现以及前端可视化方案,为开发者提供实战参考。
2026-02-15 19:56:04
782
原创 首个PCOS多智能体框架Mapis深度解析(非常详细),知识图谱+大模型重塑诊断,收藏这一篇就够了!
本文提出了Mapis,首个专为多囊卵巢综合征(PCOS)诊断设计的、基于知识图谱的多智能体框架。该框架将2023年国际指南转化为结构化协作流程,通过专职智能体模拟临床诊断,并构建PCOS知识图谱确保决策的循证性。实验证明,其准确性显著超越传统机器学习、单智能体及现有医疗多智能体系统 。
2026-02-15 19:53:25
774
原创 FastAPI部署LangGraph实战教程(非常详细),Chatbot搭建从入门到精通,收藏这一篇就够了!
在本教程中,我们将使用 FastAPI 和 LangGraph 构建一个简单的聊天机器人。并使用一个辅助函数来管理对话上下文,该函数会将消息裁剪到符合标记限制的范围内。最终页面会输出思考过程、消耗token及思考耗时
2026-02-14 21:25:12
541
原创 企业级 RAG + 知识图谱实战指南(非常详细),4 种主流路径全解析,收藏这一篇就够了!
前面我们重点讲了 **LlamaIndex + Nebula + Milvus** 这条“开源组合拳”路线,但它并不是唯一解。在企业级 RAG + 知识图谱的实际落地中,根据**业务目标、技术栈偏好、合规要求和团队能力**的不同,至少还有 **4 种主流实现路径**,每种都有成功案例。
2026-02-14 21:23:22
981
原创 GitHub 8.2k Star开源神器(非常详细),RAG提速100倍全攻略,收藏这一篇就够了!
是一直在研究和使用AI工具的小明。也一直在Github里面挖掘,看看有哪些好玩好用的开源项目~分享出来给大家!
2026-02-14 21:21:29
651
原创 GraphRAG 进阶实战教程(非常详细),A2RAG 让多跳问答效率翻倍!
一句话总结:新南威尔士大学团队提出**A2RAG**,用**“本地→桥梁→全局”**三级递进式图检索,把多跳问答的召回率提升 10%,同时把 token 和延迟砍半;核心是把**图当导航、把原文当终点,答完再三重自检**,不过关就自动改 query 重试,最多三轮。
2026-02-13 19:32:10
824
原创 多模态实体链接前沿技术(非常详细),KGMEL 融合知识图谱实战!
实体链接(Entity Linking, EL)是将文本中的提及(mentions)与知识库中的实体对齐的关键任务,支持语义搜索、问答等应用。近年来,多模态实体链接(Multimodal Entity Linking, MEL)通过整合文本和图像信息来减少歧义,提高准确率。然而,现有的MEL方法大多忽略了知识图谱(Knowledge Graph, KG)中的三元组(triples)信息,这些三元组提供了丰富的结构化上下文,能进一步桥接提及与实体间的语义差距。论文作者观察到两个现象:首先,知识库中实体的KG三
2026-02-13 19:27:07
571
原创 Topo-RAG 企业混合检索实战(非常详细),性能飙升30%的秘密!
企业知识库从来不是“纯文本”——一份 PDF 可能前半页是法律条款,后半页是 15 列的结算表。
2026-02-13 19:24:01
772
原创 企业AI大模型应用教程(非常详细),手把手带你撸一个降本增效项目!
智能客服系统是企业降本增效、升级服务体验的核心引擎。它借助AI技术,不仅能提供7x24小时的即时响应与精准解决方案,更能以始终如一的专业服务,极大的提升了用户体验。
2026-02-10 09:57:01
1054
原创 Agent Skills 检索全攻略(非常详细),颠覆你对传统 RAG 的认知!
使用 Agent Skills 做知识库检索,是一种什么体验?
2026-02-09 21:42:58
1097
原创 AI智能体从入门到精通:搭建专属智能客服保姆级教程,收藏这一篇就够了!
你是否有这样的经历当你忙得焦头烂耳的时候,突然有人过来说:> 打扰了,想跟您咨询个事情
2026-02-06 21:29:32
273
原创 AI智能体落地从入门到精通:深度解析10大行业20个场景,收藏这一篇就够了!
过去一年,“AI智能体”已经成了创业圈、互联网圈、实体老板群里反复出现的关键词。无论你是老板、产品经理、还是技术人,几乎都绕不开这场浪潮。
2026-02-06 21:25:30
673
原创 Java Agent入门基础教程(非常详细),手把手教你实现!
团队中有同事在做性能优化相关的工作,因为公司基础设施不足,同事在代码中写了大量的代码统计某个方法的耗时,大概的代码形式就是
2026-02-05 18:44:25
986
原创 20260205_183713_Agent四大范式___CRITIC:吴恩达力推Agent设
近期大型语言模型(LLMs)的进展令人瞩目。然而,这些模型偶尔会出现矛盾和问题行为,比如虚构事实、编写错误代码或产生攻击性内容。与人类不同,人类通常会借助外部工具来核实和优化他们的内容,例如利用搜索引擎核实事实,或使用代码解释器进行调试。基于这一发现,我们提出了一个名为 CRITIC 的框架,它使得本质上不透明的 LLMs 能够像人类使用工具那样,验证并逐步改进自己的输出。具体来说,CRITIC 从初始输出出发,与相关工具互动,评估文本的特定方面,然后根据验证过程中收到的反馈进行调整。通过自由问答、数学程序
2026-02-05 18:38:08
1003
原创 一文搞懂AI Agent:从原理到代码实战(非常详细),建议收藏!
Agent(智能体)比较权威的定义出自 Stuart Russell 与 Peter Norvig 的《Artificial Intelligence: A Modern Approach》(1995, 《人工智能:一种现代方法》)。
2026-02-05 18:36:48
823
原创 大模型Agent应用开发教程(非常详细),手把手教你从零构建智能体!
Agent的前身Function Calling,让大模型具备了调用外部工具的能力,可这显然还不能构成一个能帮助我们干活的智能体。作为一个智能系统,应该要具备自主感知、决策与行动能力,通过观察环境并利用可用工具采取行动,以实现特定目标。一个智能体的核心架构包括三部分:
2026-02-04 21:52:19
729
原创 AI应用开发从入门到精通:打破“调接口”误区,收藏这一篇就够了!
由于 AI 的流行,很多公司开始搞起了 AI 相关的业务,或者给老项目加个 AI 相关的功能。
2026-02-04 21:49:27
725
原创 AI Agent不是“打工人“是“流水线“!程序员必看,让你的AI不再“摸鱼“!
文章指出很多人对AI Agent的期望过高,认为它能完全替代人类工作,但实际上AI Agent更像是一个"流程机器人"而非"员工"。问题不在于AI Agent无用,而在于使用者错误地将它视为能独立思考的员工,而非需要精确指令的自动化工具。正确理解和使用AI Agent的关键在于认识到它的本质是执行预设流程的机器人,而非能够自主决策的员工。
2026-01-31 17:16:18
288
原创 【爆点】AI代理也需要“信用档案“?以太坊ERC-8004标准详解,区块链+AI开发必看!
以太坊基金会宣布 ERC-8004 标准即将上线,为 AI 代理经济提供信任基础。该标准通过身份注册表、声誉注册表和验证注册表,解决 AI 代理跨平台协作时的身份识别、信任验证问题。文章介绍了 Virtuals Protocol、MEMO、PayAI 等基于 ERC-8004 的项目,展示了 AI Agent 经济的发展前景。ERC-8004 为主网推进,使 AI 代理身份可查、声誉可追、验证可用,成为去中心化 AI 生态的关键基础设施。
2026-01-31 17:15:42
944
原创 从“自动化“到“自主化“:AI Agent+大模型重构编程范式,2025年开发者必看!
为深入贯彻落实工业和信息化部《工业互联网和人工智能融合赋能行动方案》,加快推动工业互联网与人工智能在更广范围、更深程度、更高水平上实现融合赋能,中国工业互联网研究院依托工业互联网大数据技术工信部重点实验室工业智算研究中心,联合中科算网算泥社区,共同发布《AI Agent智能体技术发展报告》(以下简称报告)。
2026-01-31 17:15:05
836
原创 开源大模型炸场!Clawdbot 7*24小时不休息,小白程序员也能轻松上手,性能直逼ChatGPT!
ClawTech团队推出开源AI智能体Clawdbot大模型,突破"响应不连续、部署门槛高、技术封闭化"三大痛点,实现7*24小时无间断运行。该模型基于Transformer异构MoE架构,提供基础版(13B)、标准版(70B)和旗舰版(130B),在语义理解、逻辑推理、代码生成等性能测试中超越多数竞品。完全开源核心代码、训练数据集与工具链,大幅降低AI智能体开发门槛,适用于企业办公、开发者辅助、民生服务等场景,推动AI技术普惠化发展。
2026-01-31 17:14:11
1008
原创 AI Agent时代来临:从“代码民工“到“AI指挥官“,编程开发迎来革命性变化,小白必看!
AI Agent正引领工业AI从"自动化工具"向"自主智能伙伴"跃迁,其核心架构包含"大脑、感知、行动、记忆"四大模块,具备自主性、进化性和协同性。2025年被视为AI Agent元年,它将重塑工业价值链,推动生产模式从"数据驱动"到"认知驱动",决策模式从"经验依赖"到"人机共生",商业模式从"一次性销售"到"持续性服务"。在中国,国家战略支持与制造业优势为工业AI Agent发展提供了"天时地利",预示工业系统分工方式将发生深刻变革。
2026-01-31 17:13:41
1037
原创 “AI已死?大模型才是真YYDS!2026年9大趋势颠覆编程开发,小白逆袭必看!“
2026年AI技术将从实验性工具转向业务必需品,特别是Agent技术将深入业务后台,推动系统重构和代码生成变革(60%-70%由AI生成)。企业需解决规模化落地挑战,沉淀行业"暗知识",并重塑组织文化为"人机协作"。多媒体生成技术将迎来突破,小团队"特种兵"模式将取代臃肿架构。AI应用将静水深流,观望者将面临最大风险。
2026-01-31 17:13:05
729
原创 AI Agent编程革命炸裂来袭!小白也能开发智能系统,5大变革让你秒变技术大神!
AI Agent正引发计算模式从传统"问答"向"行动"的范式转移,通过智能规划与跨场景协同重塑商业价值。沃丰科技报告揭示五大核心变革:全员Agent化实现意图驱动,业务流Agent化打破业务孤岛,客户体验专家化推动主动服务,安全防御主动化构建智能防护体系,以及规模化成长推动人才升级。AI Agent市场呈爆发式增长,预计2026年商业竞争将迈入"人+Agent"协同新阶段,为企业创造持续增长动力。
2026-01-31 17:10:52
698
原创 保姆级教程!AI Agent大模型全解析,让编程开发效率翻倍yyds
文章系统梳理了AI Agent生态系统,从基础模型(GPT、Claude、Deepseek等)和应用场景(企业决策、内容生成、编程辅助、构建平台)两大维度展开。文章提供了基于问题定位、使用者和数据隐私需求的选型指南,并展望了多智能体协同、专业化模型和边缘化部署的未来趋势。
2026-01-30 20:40:46
569
原创 RAG没凉!‘上下文工程‘才是真香!小白程序员必学的大模型新技能,Agent Composer一键上手!
RAG并非消亡,而是被重新定义为“上下文工程”。Contextual AI推出Agent Composer,赋能企业在多元数据源上构建代理,强调集中式、企业级的上下文状态管理,是提示工程的演进。那么,RAG(检索增强生成)现在已经消亡了吗?去年五月,我向Contextual AI的首席执行官[2] Douwe Kiela 提出了这个问题,因为围绕MCP(模型上下文协议)的炒作日益高涨。两者都是大型语言模型的数据检索机制,但在过去一年中,MCP已经占据了所有头条[3]。
2026-01-30 20:39:50
896
原创 【AI干货】揭秘大厂Agent架构秘籍:20种方案+代码模板,新手也能快速上手!
文章总结了大厂正在使用的20种Agent架构,分为四大类:单轮执行型、多轮规划型、多Agent协作型和垂直行业Agent。详细介绍了每种架构的工作原理、适用场景、设计要点和落地案例,覆盖从简单任务到复杂项目的各种需求,帮助开发者根据业务场景选择合适的Agent架构。
2026-01-30 20:38:27
892
原创 程序员速看!AI智能体正在重写开发规则,2026年你还在手动写代码就out了!
2026年将是AI智能体从概念走向规模化生产力的分水岭。调研显示,57%企业已在多阶段工作流程部署智能体,86%将其用于生产代码开发,AI智能体在开发全流程提升效率近60%,80%企业已获得可衡量经济回报。未来趋势是从单步自动化走向跨职能流程,主流路径是"混合式"部署。最大障碍不是模型,而是数据集成与变革管理。智能体将把人从执行中解放出来,专注于战略工作。
2026-01-30 20:37:37
662
原创 保姆级教程!从0到1构建生产级AI代理:RAG+FastAPI让大模型yyds,小白也能秒变高手!
本文提供了使用RAG和FastAPI构建生产级AI代理的完整蓝图,涵盖API层设计、代理循环实现、RAG向量搜索、护栏系统、成本监控、异步处理和容器化部署等关键组件,强调可靠性、可观测性、成本控制和安全性,为开发者提供了从零开始构建可扩展、安全且经济高效的AI代理系统的实用指导。
2026-01-30 20:36:19
919
原创 AI开发者的福音!这款浏览器插件让大模型检索“指哪打哪“,小白也能精准控制AI信息源
OwlerLite是一款解决传统RAG架构痛点的浏览器插件,通过引入用户自定义范围功能和语义级新鲜度检测,实现了"范围可控+信息新鲜"的检索体验。它采用SimHash+嵌入两级比对技术识别页面实质变化,为文本块添加范围、版本等元数据,并设计了SF@k、SL@k、R(q,t)三个指标量化范围忠诚度和信息新鲜度。实验证明该方案能提升范围忠诚度30%,减少越界泄露50%,为需要可控溯源的企业场景提供了低门槛落地路径。
2026-01-30 20:35:27
990
原创 本地AI大模型+200+数据源,小白也能5分钟搞定!
文章介绍了一种本地AI解决方案,通过整合mcp-use、MindsDB和Ollama技术,构建了一个可查询200+数据源的单界面RAG系统。该系统无需云服务,完全在本地运行,保护数据安全。用户通过聊天界面提问,系统自动确定数据源、查询数据并利用本地LLM生成有上下文支撑的答案。文章提供了详细的搭建步骤和代码示例,使开发者能够轻松部署这一多源数据查询系统。
2026-01-30 20:34:40
595
原创 【yyds】大模型开发新风向:上下文工程接管AI编程,RAG真的凉了吗?小白也能秒懂的进阶指南!
RAG技术并未消亡,而是被重新品牌为"上下文工程",成为AI开发新趋势。MCP与上下文工程正取代传统提示工程,Contextual AI等公司推出智能体编排器工具,帮助开发者管理上下文状态、构建企业级智能体应用。上下文工程涉及系统指令、工具、MCP、外部数据等全方位管理,是智能体时代的核心技术,为企业提供安全可靠的AI解决方案。
2026-01-29 19:02:24
981
原创 震惊!一个1000美元的AI Agent如何干掉百万年薪销售团队?大模型重构GTM全攻略
文章揭示AI时代GTM的深刻变革:GTM工程师崛起,用代码和AI重构销售流程;一个1000美元的AI Agent可替代百万年薪销售团队;产品技术差距缩小后,购买体验成为竞争壁垒;企业客户购买主要为"避免变糟"而非"变得更好";PLG有天花板,大企业销售仍需人工;销售人员需具备更高技术素养。未来销售组织将是以工程思维解构增长逻辑的"代码销售员"。
2026-01-29 19:01:39
729
原创 【硬核干货】破解RAG黑盒:Project_Golem+Milvus打造3D向量可视化,小白也能成为AI调优高手!
本文介绍Project_Golem项目,通过UMAP降维和Three.js渲染将高维向量空间可视化,解决RAG调试黑盒问题。结合Milvus 2.6.8升级后,实现了实时数据注入、增量索引更新和混合检索能力,使方案具备生产级规模。开发者可通过3D界面直观观察语义空间结构、定位检索策略问题、验证调优效果,大幅提升RAG系统调试效率。
2026-01-29 19:01:05
1542
原创 AI杀疯了!LangChain创始人揭秘:2026年“长任务Agent“元年,程序员该慌了?
文章是LangChain创始人Harrison Chase关于长任务Agent的访谈,探讨了AI从简单聊天向长时间执行任务的Agent演变。长任务Agent系统行为由代码和模型共同决定,引入了非确定性挑战。关键技术包括模型、框架和运行框架三大组件,上下文工程成为核心。2026年被视为"长任务Agent元年",传统软件公司面临范式转型,数据资产仍具价值但需全新工程方法。编程Agent可能成为通用AI的终局形态,记忆与自我改进或将成为护城河。
2026-01-29 19:00:30
1063
原创 【AI神器】RAG-Anything:一键搞定PDF/Word/Excel/PPT/图片,小白程序员也能构建企业级知识库!
RAG-Anything是解决多模态RAG系统数据清洗痛点的开源项目,支持全格式文档处理、高保真解析、专业内容分析、多模态知识图谱和混合检索。基于asyncio设计,安装简单,但需一定资源支持。对处理复杂文档的企业级知识库开发,是全面且值得考虑的技术选型。
2026-01-29 18:59:49
930
原创 AI+数据库的神仙结合!手把手教你构建“会计算“的RAG系统,程序员必备!
文章探讨构建"能算数"的RAG系统,通过"指标语义化+Text-to-SQL"架构,让大模型处理结构化数据。系统包含指标定义、元数据索引、Prompt转换、执行验证和结果解读五大步骤,结合少样本提示等技术,实现从"人找数"到"数找人"的转变,提高数据分析效率,但需注意幻觉风险和数据安全问题。
2026-01-29 18:58:45
783
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅