自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1271)
  • 收藏
  • 关注

原创 谷歌推出开源医疗大模型 MedGemma

2025年5月,谷歌在其年度开发者大会 Google I/O 期间宣布推出 MedGemma,专为医疗领域打造的开源 AI 模型。

2025-05-24 10:13:17 380

原创 n8n实战:零代码构建一个RAG智能体

当我们拥有一个特定的知识库(例如一篇长文档),并希望构建一个能够就此回答问题的智能体时,RAG 就非常有用。

2025-05-24 10:11:47 434

原创 取代后端岗,国内又一新兴岗位在崛起!这才是程序员未来5年最好的就业方向!

2025开年,AI技术打得火热,正在改变程序员的职业命运:> 阿里云核心业务全部接入Agent体系;>> 字节跳动30%后端岗位要求大模型开发能力;>> 腾讯、京东、百度开放招聘技术岗,80%与AI相关……

2025-05-24 09:42:41 349

原创 不同的芯片上基于 vLLM 测试 QwQ-32B 的性能

本测试使用 QwQ 的两个模型,分别是 4bit 量化版本和 AWQ 版本。> AWQ(Activation-aware Weight Quantization)是一种激活感知的权重量化技术,主要用于优化大语言模型(LLM)的推理效率。

2025-05-24 09:41:10 369

原创 DeepSeek-知识图谱赋能大模型案例

知识图谱与大模型的融合已是热点研究对象,其中,通过知识图谱可以赋能大模型中预训练、监督微调、对齐微调、模型评估、模型推理等每个步骤。本作品聚焦于知识图谱赋能大模型的技术路径,内容参考自《知识图谱与大模型融合实践研究报告》,展示了7张相关图,分别是:①知识图谱赋能大模型的技术路径、②利用知识图谱增强大模型预训练、③利用知识图谱增强大模型的监督微调/对齐微调、④用知识图谱增强大模型的常识和领域知识推理能力、⑤用知识图谱增强大模型推理的可解释性、⑥基于知识图谱增强大模型的文档问答、⑦知识图谱赋能/增强大模型系统测

2025-05-23 21:41:06 564

原创 你的Agent几级?知名风投BVP定义Agent七大等级~

知名风险投资机构Bessemer Venture Partners(BVP)发布了一份关于Agent的洞察,报告中给Agent从L0到L6进行了一个划分。

2025-05-23 21:40:00 335

原创 Neo4j+GraphRAG:法律合同分析新工具

在商业活动中,法律合同是定义各方关系、义务和责任的核心文件。无论是合伙协议、保密协议 (NDA),还是供应商合同,都包含关键信息,用于驱动决策、管理风险和确保合规。然而,梳理这些合同并从中提取洞察,过程往往复杂且耗时。

2025-05-23 21:38:37 628

原创 Dify+DeepSeek打造企业级知识库AI助手

本地部署的最大意义在于利用DeepSeek大模型的能力加上自己的知识库,可以训练出一个符合自己需求的大模型。

2025-05-22 10:45:00 804

原创 MCP for 可观测2.0,6个让MCP开发更高效的小妙招

可观测近年来已经成为一个关键概念,它不仅仅局限于监控,还包括了日志记录、指标收集、分布式追踪等技术手段,旨在帮助团队更好地理解系统运行状况、快速定位问题以及优化性能。可观测2.0融合 MCP,可以让用户更好地感知系统、分析问题——用自然语言开启与系统的对话!本文将分享6个设计 MCP Server 的亲身实践,帮助大家更好地融合与使用。

2025-05-22 10:45:00 585

原创 抛弃 OCR,抛弃文本提取,抛弃分块!提升RAG性能的新方法!

而对记忆源信息(尤其是复杂文档)的**深度理解**是高质量Conext供给的又一大关键。传统的文本提取和分块方法,在面对图文混排、表格遍布的文档时,往往力不从心,生成的 Context 质量堪忧,这已成为提升 RAG 应用性能的一大瓶颈。

2025-05-21 10:45:00 582

原创 周鸿祎最新70页讲义:DeepSeek给我们带来的创业机会

周鸿祎金句:AI不是替代人类,而是让普通人拥有超能力。现在看不懂、看不清、看不起,未来就看不见了。

2025-05-21 10:45:00 1319

原创 5000字教程:用AI实时查询数据库,自动生成可视化图表 | Dify工作流

但说实话,MCP的方式目前还是很不稳定的,不适合用在实际工作中。更不用说把Excel直接扔给AI做分析的方式:1. 数据安全问题;2. 出来的结果准确率很低。

2025-05-20 10:35:46 676

原创 李飞飞最新访谈:AI是文明级别技术,我们如何掌控技术发展方向盘?15000字实录

ChatGPT的横空出世,让人工智能(AI)以前所未有的速度和热度席卷全球。兴奋、期待、焦虑、迷茫……复杂的情绪交织在一起,一个根本性的问题摆在所有人面前:AI的未来将走向何方?我们是驾驶着这艘快船驶向星辰大海,还是在不经意间打开了潘多拉魔盒?

2025-05-20 10:33:42 966

原创 智能体开发框架Langgraph基础流程和理论梳理

智能体应该才是大模型应用的未来,它才是有可能实现真正人工智能的途径

2025-05-20 09:52:48 894

原创 GRPO+Qwen2.5,7B大模型微调实战!

给模型提供一份事件列表(包含开始和结束时间),并告知它哪些事件是高优先级的。目标是创建一个日程安排,使所选事件的总加权时长达到最大化。

2025-05-19 09:49:49 665

原创 一文全面汇总大模型技术生态!

大语言模型(Large Language Model, LLM)是人工智能领域的核心技术,基于**Transformer架构**,通过海量数据预训练和微调,实现对自然语言的深度理解与生成能力。其核心原理包含以下关键要素:

2025-05-19 09:44:59 789

原创 盘点12种VLM多模态大模型,文档结构化抽取,谁最强!

- 关键信息提取(KIE):从非结构化文档文本中提取结构化字段。- 视觉问答(VQA):通过问答评估对文档内容的理解。- 光学字符识别(OCR):衡量识别印刷文本和手写文本的准确性。- 文档分类:评估模型对各种文档类型的分类准确性。- 长文档处理:测试模型在长篇、有丰富上下文的文档上的推理能力。- 表格提取:基准测试从复杂表格格式中提取结构化数据。- 置信度评分校准:评估模型预测的可靠性和置信度。

2025-05-19 09:44:09 950

原创 AI知识库RAG技术的三大痛点

在人工智能领域,RAG(Retrieval-Augmented Generation)技术作为一种结合了检索和生成模型的方法,已经在多个应用中展现出其潜力。然而,尽管RAG技术具有显著的优势,但在实际应用中仍然面临三大痛点:切片方式粗暴、检索不精准以及缺乏大局观。这些问题的存在,不仅影响了技术的应用效果,也限制了其在更广泛场景中的推广。

2025-05-19 09:43:00 1068

原创 AI Agent:四大核心能力详解与技术演进

在人工智能领域的宏大版图中,智能体(Agent)正以迅猛之势,逐渐攀升至舞台的聚光灯下。当前技术收敛趋势表明,2025年将成为智能体突破「环境感知-自主决策-价值对齐」能力三角的关键里程碑——这不仅是底层技术栈的颠覆性迭代(多模态感知网络、神经符号推理架构、具身智能系统的深度融合),更预示着人机协作范式将进入「认知共生」的新纪元。科技巨头、开源社区与产业资本的竞逐布局(据Gartner预测,2025年全球智能体开发框架投入将突破270亿美元),折射出这场技术变革对全球数字生态的重构势能。当下,2025年被广

2025-05-18 10:45:00 1854

原创 企业级 AI Agent 系统落地架构设计剖析

MCP构建AI大模型技术架构新体系本文从以下**4个方面详细剖析**:

2025-05-17 10:45:00 1104

原创 AI多模态融合技术架构图

知识最终应用于聊天机器人、智能客服、数据分析、情绪感知、智能推荐、可视化图表、深度思考等场景,实现多模态 AI 的实际价值。

2025-05-16 15:41:21 754

原创 使用LangGraph基于DAG构建自动化任务

随着企业逐渐迈向自动化运营,他们需要的不仅仅是回答问题的系统,而是能够思考、规划和行动的系统。这些下一代系统必须能够协调多步骤流程,选择最合适的工具或数据源,检索并推理上下文信息,并在没有持续人为干预的情况下自主执行决策。

2025-05-16 15:39:54 976

原创 图检索增强生成(GraphRAG):让AI真正理解复杂知识

你是否曾经遇到过这样的情况:向ChatGPT提问专业问题时,它给出的答案看似合理,但实际上缺乏深度或存在事实错误?今天,我们将探索一项解决这一问题的前沿技术——图检索增强生成(GraphRAG),这项结合知识图谱与检索增强生成的创新方法正在彻底改变AI在专业领域的应用方式。

2025-05-16 14:55:54 867

原创 Coze智能体案例:使用工作流自动制作PPT

首先,在Coze平台(https://www.coze.cn)点击左侧的加号(+)创建智能体,输入“人设与回复逻辑”。

2025-05-15 09:36:33 754

原创 A2A vs. MCP全方位对比(附案例实操详解)

我在具体研究 A2A 之前,刷到过几个视频号的博主介绍 A2A时说 A2A 完全是多此一举,现有的 MCP(大模型上下文协议 )可以直接实现 agent 之间的标准化交互功能。

2025-05-15 09:34:51 1172

原创 90%企业不知道的RAG优化秘籍:Dify原生集成RAGflow

正式开始之前我们还要解决一个小问题,安装好的Dify,忽然就不能加载了。通过分析,应该是我们当时装RAGflow的时候,删除了Docker。这里应该也包含着Dify的docker。

2025-05-14 11:38:47 816

原创 AI大模型医疗护理场景应用架构图

这张架构图展示了 AI 大模型在医疗场景中的应用架构,采用分层设计,涵盖运行环境、数据存储、数据处理、业务逻辑及展示层,辅以权限控制与日志记录,具体如下

2025-05-14 11:37:09 1003

原创 图解 LLM(大语言模型)的工作原理

## LLM 工作原理解释### 条件概率解释他提到,在介绍 LLM 之前,需要先了解一下**条件概率**(conditional probability),应该是与高中、大学学的概率学相关。有一个很形象的例子:

2025-05-14 10:57:38 965

原创 动画演示面向 AI 工程师的 10 个MCP、智能体和&RAG 项目

在本项目中,您将学习如何创建一个由MCP 提供支持的智能体RAG,用于搜索向量数据库并在需要时回退到Web 搜索。

2025-05-14 10:56:25 704

原创 这份谷歌提示词指南,让你秒变Prompt高手!

随着ChatGPT、Gemini等大型语言模型(LLM)的普及,与AI对话、让AI完成任务已经成为许多人的日常。但你是否发现,有时候AI的回答并不如预期?这很可能不是模型本身的问题,而是你给出的“指令”不够清晰或巧妙

2025-05-14 10:54:49 878

原创 深度解析Agent实现,定制自己的Manus

前一阶段Manus大火,被宣传为全球首款“真正意义上的通用AI Agent”,其核心能力就是基于LLM的**自主任务分解与执行**,根据官方测试数据,Manus 在 GAIA 基准测试中表现超越 OpenAI 同类产品,且完成任务的成本更低。虽然之后技术大咖们对齐技术深度表示不屑(嫉妒~), 认为其缺乏底层创新,依赖现有工具链组合。 但其工程化整合能力仍具有较高的价值,另外还有两个明显的特点,值得学习。

2025-05-13 09:51:20 816

原创 新Ai项目,来啦!教你开发一套 Ai Agent 服务!

如图,以通过数据库表动态配置的手段,完成相关物料的加载,包括;`模型(gpt-4.1/deepseek)`、`客户端`、`对话预设`、`执行规划(Planning)`、`顾问(记忆、RAG、日志)`、`工具(MCP`)等,在把单个 Client 串联,完成整个 Agent 调用链。这样一个 Agent 调用链可以以对话形式使用或通过 Agent 动态任务自动执行。

2025-05-13 09:47:47 1001

原创 蚂蚁集团等:GraphRAG技术综述

大语言模型(LLMs)在自然语言处理领域取得显著进展,但存在缺乏领域知识、信息更新不及时和 “幻觉” 等问题。检索增强生成(RAG)通过引入外部知识改进 LLMs 输出,但传统 RAG 在处理文本关系以及全局信息提取方面有一定局限性,难以突出相互之间的影响。为此,本文提出的GraphRAG 则利用图数据库的结构信息,更精准全面地检索,提升回答的准确性和相关性。

2025-05-13 09:44:40 671

原创 AI Agents入门教程之五种智能体工作流设计模式

AI智能体不仅仅是花哨的聊天机器人——它们更像是能自主"思考"和行动的智能助手,能够协调多个步骤或工具来完成目标。在实际应用中,智能体通常结合大语言模型(LLM)的推理能力与外部工具(数据库、API等)来处理复杂任务。

2025-05-13 09:41:25 833

原创 RAG(检索增强生成)系统实践与调优

在人工智能领域,检索增强生成(Retrieval Augmented Generation, RAG)是一种结合信息检索和生成式人工智能的技术,它通过从外部数据源中检索相关信息,来辅助大语言模型(Large Language Model, LLM)生成更为准确、上下文相关的答案。

2025-05-12 20:42:56 639

原创 从文档整理到提示词设计:6步打造企业级RAG系统全攻略

知识库质量直接影响最终效果,因此起始阶段需明确包含文档类型,如政策原文、业务问答、操作指引等,并进行预处理。此阶段可从以下方面优化:

2025-05-12 20:40:58 1031

原创 检索增强生成(RAG)的最新发展:一文汇总11种新型RAG算法!

随着人工智能的快速发展,检索增强生成(Retrieval-Augmented Generation,RAG)技术正在经历前所未有的演变。RAG技术通过将外部知识融入大型语言模型(LLM)的生成过程,极大地提高了AI系统的事实准确性和可靠性。如今,RAG正向更具智能性和自主性的方向发展,能够处理像超图这样的复杂结构,并适应各种专业领域的需求。

2025-05-12 20:40:07 908

原创 RAG智能体实战:构建企业内部知识库问答系统

RAG(Retrieval-Augmented Generation)智能体作为一种结合了信息检索和大语言模型生成的强大工具,可以有效缓解大模型幻觉、提升知识时效性以及信息可追溯性,正在为我们提供更为可行的解决方案。本文将介绍RAG的基本概念,并展示如何构建一个企业内部知识库问答系统。

2025-05-11 10:45:00 1561

原创 基于 Spring AI Alibaba 的 RAG 架构调优实践

RAG(Retrieval Augmented Generation,检索增强生成)是一种结合数据工程、信息抽取和文本生成的技术范式。

2025-05-10 09:50:18 860

原创 一文讲完17种提示词工程(prompt engineering)方法

可在**没有提供任何示例**的情况下,直接指示模型完成任务的方法。核心思想是,凭借大模型在海量数据中学习到的通用知识和能力,直接理解任务要求并给出正确的答案。

2025-05-10 09:45:50 1218

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除