数学建模 --- Lingo 钢管下料问题

文章探讨了如何使用数学模型解决原料钢管的切割问题,以满足不同长度的客户需求,同时保证剩余总余量最小。方法包括直接摆公式和集合循环方式,以及在需求增加时如何保持钢材使用最少。最终得出最小总根数和相应的切割模式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 题目:

原料钢管:每根19米

客户需求:4米50根,6米20根,8米15根

问题1:如何切割原料钢管剩余总余量最小?

方法1:直接摆数学公式。

model:
min = 3*x1 + x2 + 3*x3 + 3*x4 + x5 + x6 + 3*x7;
4*x1 + 3*x2 + 2*x3 + x4 + x5 > 50;
x2+2*x4+x5+3*x6 > 20;
x3+x5+2*x7 > 15;
@gin(x1);@gin(x2);@gin(x3);@gin(x4);@gin(x5);@gin(x6);@gin(x7);
end  

方法2:集合和循环方式

model:
sets:
pat/1..7/:x,f; 
pipe/1..3/:b;
link(pipe,pat):A;
endsets
data:
f = 3,1,3,3,1,1,3;
b = 50,20,15;
A = 4,3,2,1,1,0,0
0,1,0,2,1,3,0
0,0,1,0,1,1,2;
enddata
min = @sum(pat(i):(f(i)*x(i)));
@for(pipe(i):(@sum(pat(j):A(i,j)*x(j)))> b(i));
@for(pat(i):@gin(x(i)));
end

结果图:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值