题目背景
战争已经进入到紧要时间。你是运输小队长,正在率领运输部队向前线运送物资。运输任务像做题一样的无聊。你希望找些刺激,于是命令你的士兵们到前方的一座独木桥上欣赏风景,而你留在桥下欣赏士兵们。士兵们十分愤怒,因为这座独木桥十分狭窄,只能容纳 11 个人通过。假如有 22 个人相向而行在桥上相遇,那么他们 22 个人将无法绕过对方,只能有 11 个人回头下桥,让另一个人先通过。但是,可以有多个人同时呆在同一个位置。
题目描述
突然,你收到从指挥部发来的信息,敌军的轰炸机正朝着你所在的独木桥飞来!为了安全,你的部队必须撤下独木桥。独木桥的长度为 LL,士兵们只能呆在坐标为整数的地方。所有士兵的速度都为 11,但一个士兵某一时刻来到了坐标为 00 或 L+1L+1 的位置,他就离开了独木桥。
每个士兵都有一个初始面对的方向,他们会以匀速朝着这个方向行走,中途不会自己改变方向。但是,如果两个士兵面对面相遇,他们无法彼此通过对方,于是就分别转身,继续行走。转身不需要任何的时间。
由于先前的愤怒,你已不能控制你的士兵。甚至,你连每个士兵初始面对的方向都不知道。因此,你想要知道你的部队最少需要多少时间就可能全部撤离独木桥。另外,总部也在安排阻拦敌人的进攻,因此你还需要知道你的部队最多需要多少时间才能全部撤离独木桥。
输入格式
第一行:一个整数 LL,表示独木桥的长度。桥上的坐标为 1\cdots L1⋯L。
第二行:一个整数 NN,表示初始时留在桥上的士兵数目。
第三行:有 NN 个整数,分别表示每个士兵的初始坐标。
输出格式
只有一行,输出 22 个整数,分别表示部队撤离独木桥的最小时间和最大时间。22 个整数由一个空格符分开。
输入输出样例
输入 #1复制
4 2 1 3
输出 #1复制
2 4
说明/提示
初始时,没有两个士兵同在一个坐标。
数据范围 1\le L\le5\times 10^31≤L≤5×103,0\le N\le5\times10^30≤N≤5×103,数据保证 N\le LN≤L。
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstdlib>
using namespace std;
const int N=5e3+10;
int f[N];
int main()
{
int L,n;
cin>>L;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>f[i];
}
int res1=0;
int res2=0;
for(int i=1;i<=n;i++)
{
res1=max(res1,min(f[i],L-f[i]+1)); //最小中选最大的
res2=max(res2,max(f[i],L-f[i]+1)); //最大中选最大的
}
cout<<res1<<" "<<res2<<endl;
}
这个DP比较坑,要思考才能找到简单的写法
我觉得题目中一句话是关键,“你连每个士兵初始面对的方向都不知道”,我想很多博主可能都漏了对这句话的思考,因为我在思考的过程中,有想过,如果两个士兵是面对面,从初始位置到他们相遇,这一段时间是否也要算进去,但是看了很多大佬的写法,貌似不用算进去,也就是看成他们可能不是面对面,各自选自己的最短路
借用洛谷一位大佬的写法
分两种情况考虑:
①最小值:每个士兵选择一条对自己最短的路程ai(即选择初始方向)。由于需要等待最慢的一名士兵走出独木桥,故结果为数组a所有元素的最大值;
②最大值:每个士兵选择一条对自己最长的路程bi(即选择初始方向)。由于需要等待最慢的一名士兵走出独木桥,故结果为数组a所有元素的最大值。