洛谷P1007独木桥 【模拟+DP】

8 篇文章 0 订阅

题目背景

战争已经进入到紧要时间。你是运输小队长,正在率领运输部队向前线运送物资。运输任务像做题一样的无聊。你希望找些刺激,于是命令你的士兵们到前方的一座独木桥上欣赏风景,而你留在桥下欣赏士兵们。士兵们十分愤怒,因为这座独木桥十分狭窄,只能容纳 11 个人通过。假如有 22 个人相向而行在桥上相遇,那么他们 22 个人将无法绕过对方,只能有 11 个人回头下桥,让另一个人先通过。但是,可以有多个人同时呆在同一个位置。

题目描述

突然,你收到从指挥部发来的信息,敌军的轰炸机正朝着你所在的独木桥飞来!为了安全,你的部队必须撤下独木桥。独木桥的长度为 LL,士兵们只能呆在坐标为整数的地方。所有士兵的速度都为 11,但一个士兵某一时刻来到了坐标为 00 或 L+1L+1 的位置,他就离开了独木桥。

每个士兵都有一个初始面对的方向,他们会以匀速朝着这个方向行走,中途不会自己改变方向。但是,如果两个士兵面对面相遇,他们无法彼此通过对方,于是就分别转身,继续行走。转身不需要任何的时间。

由于先前的愤怒,你已不能控制你的士兵。甚至,你连每个士兵初始面对的方向都不知道。因此,你想要知道你的部队最少需要多少时间就可能全部撤离独木桥。另外,总部也在安排阻拦敌人的进攻,因此你还需要知道你的部队最多需要多少时间才能全部撤离独木桥。

输入格式

第一行:一个整数 LL,表示独木桥的长度。桥上的坐标为 1\cdots L1⋯L。

第二行:一个整数 NN,表示初始时留在桥上的士兵数目。

第三行:有 NN 个整数,分别表示每个士兵的初始坐标。

输出格式

只有一行,输出 22 个整数,分别表示部队撤离独木桥的最小时间和最大时间。22 个整数由一个空格符分开。

输入输出样例

输入 #1复制

4
2
1 3

输出 #1复制

2 4

说明/提示

初始时,没有两个士兵同在一个坐标。

数据范围 1\le L\le5\times 10^31≤L≤5×103,0\le N\le5\times10^30≤N≤5×103,数据保证 N\le LN≤L。

#include <iostream> 
#include <cmath>
#include <cstdio>
#include <cstdlib>
using namespace std;
const int N=5e3+10;
int f[N];
int main()
{
	int L,n;
	cin>>L;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>f[i];
	}
	int res1=0;
	int res2=0;
	for(int i=1;i<=n;i++)
	{
		res1=max(res1,min(f[i],L-f[i]+1));  //最小中选最大的 
		res2=max(res2,max(f[i],L-f[i]+1));  //最大中选最大的 
	}
	cout<<res1<<" "<<res2<<endl;
}

这个DP比较坑,要思考才能找到简单的写法

我觉得题目中一句话是关键,“你连每个士兵初始面对的方向都不知道”,我想很多博主可能都漏了对这句话的思考,因为我在思考的过程中,有想过,如果两个士兵是面对面,从初始位置到他们相遇,这一段时间是否也要算进去,但是看了很多大佬的写法,貌似不用算进去,也就是看成他们可能不是面对面,各自选自己的最短路

借用洛谷一位大佬的写法

分两种情况考虑:

①最小值:每个士兵选择一条对自己最短的路程ai(即选择初始方向)。由于需要等待最慢的一名士兵走出独木桥,故结果为数组a所有元素的最大值;

②最大值:每个士兵选择一条对自己最长的路程bi(即选择初始方向)。由于需要等待最慢的一名士兵走出独木桥,故结果为数组a所有元素的最大值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值