- 博客(2)
- 问答 (7)
- 收藏
- 关注
转载 图像检索 Deep Hashing
在检索任务中,Metric Learing是为了得到具有很好表征能力的特征向量, Deep Hashing则是为了得到具有很好表征能力的二值向量。 那么二值向量相比于一般的特征向量,优势在哪里呢? 主要有两点:更少的存储空间: 二值向量只有0和1, 可以节约大量的存储空间。以1024维的特征为例,如果是二值特征, 只需要1024 / 8 = 128byte. 如果是浮点特征, 需要的空间大小为1024 * 4 = 4KB。 相比之下,二值向量的存储空间为浮点特征的1/32. 更高的检索效率: 二值向量
2022-05-19 13:14:28 1597
空空如也
tensorflow训练模型,mAp一直为1
2022-08-02
xmalloc: out of memory when requesting
2022-06-15
loss函数图像存在几个尖峰,是什么导致的?
2022-05-19
一个基于vgg16的卷积网络,他的权重和偏执量怎么看啊
2022-05-11
leetcode有效的括号,报错怎么解决
2022-05-07
在执行tensorflow时出现 list index out of range
2022-04-29
构建自己的数据集,关于统计标签信息的问题
2022-04-25
TA创建的收藏夹 TA关注的收藏夹
TA关注的人