一文总览Agent系统应用

大型语言模型(LLM)驱动的智能代理在社会科学、自然科学和工程领域有着广泛的应用。这些应用利用了LLM在自然语言处理、文本生成和数据分析方面的强大能力,来解决各种复杂问题和提供创新的解决方案。

社会科学

  1. 社会研究分析:LLM可以处理和分析大量的社会科学文献,提取重要的趋势和洞见。例如,在政治学中,可以用来分析选民行为和政策影响。

  2. 舆情监测:在社会学和传媒研究中,LLM驱动的智能代理可以实时监测和分析社交媒体上的舆情,帮助研究人员了解公众对某些事件或问题的态度和反应。

  3. 语言与文化研究:通过分析大量的文本数据,LLM可以帮助研究语言模式、文化表达以及跨文化交流中的差异。

自然科学

  1. 文献综述与知识图谱构建:LLM可以快速处理并总结大量的科研文献,帮助研究人员进行文献综述,并构建领域知识图谱,以便更好地理解学科的发展方向和研究热点。

  2. 数据分析与解释:在生物学、化学和物理学等领域,LLM可以辅助研究人员分析实验数据,提供数据解释和假设生成,提升研究效率。

  3. 科学沟通:LLM可以将复杂的科学概念和研究成果转化为通俗易懂的语言,帮助科学家向公众传播科学知识,提高科学素养。

工程

  1. 自动化设计与优化:在机械工程和电气工程领域,LLM可以帮助设计和优化复杂的系统和组件。例如,通过自然语言描述的需求,生成初步的设计方案或改进现有设计。

  2. 技术文档生成:在软件工程中,LLM可以生成高质量的技术文档,包括代码注释、用户手册和开发文档,减少开发人员的工作负担。

  3. 预测与维护:在工业工程中,LLM驱动的智能代理可以分析设备传感器数据,预测潜在的故障,提供维护建议,从而延长设备寿命并提高运行效率。

综合应用

在跨学科的研究和应用中,LLM驱动的智能代理还可以通过整合来自不同领域的数据和知识,提供综合性的解决方案。例如,在智慧城市建设中,结合社会科学、自然科学和工程领域的知识,智能代理可以帮助规划交通系统、优化能源使用以及提升公共服务质量。

这些应用展示了LLM驱动的智能代理在各个学科中的巨大潜力和实际价值。随着技术的不断进步,其应用范围和深度将会进一步扩大,为科学研究和工程实践带来更多创新和突破。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值