本地部署的最大意义在于利用DeepSeek大模型的能力加上自己的知识库,可以训练出一个符合自己需求的大模型。
想象下如果你是一个医生,有一堆科研资料。你想拥有一个大模型机器人,学习了你所有的资料。每当你想查科研资料找到答案的时候,自己问这个机器人就好了。省去了自己很多查找资料的时间
这就是本地部署+知识库的作用。是DeepSeek官网不具备的。因为这是训练的你的私有资料。
今天就来分享下这个搭建过程。用到的工具组合是Docker+Dify+DeepSeek
Dify是基于LLM的大模型知识库问答系统,里面集成DeepSeek以及私有知识库,而Dify采用Docker的方式来安装
01
下载安装Docker
首先在docker网站 https://www.docker.com/ 下载docker
有Mac,linux,windows可供选择。我的电脑是windows系统的,因此下载Windows的。
安装完成后,重启系统生效。打开登录就可以使用
02
安装Dify
登录网址 https://github.com/langgenius/dify
点击Dnowload ZIP。下载到本地并解压。注意: 在本地的保存路径不要有中文字符。否则后续运行会失败
windows进入powershell(不是CMD)。进入dify解压包下面的docker目录,分别执行下面两条命令
cp .env.example .env
docker -compose up -d
docker会拉取dify进行下载
大概时间20分钟左右。下载完成
重启docker 桌面软件,在containers中能看到docker的这个image,表示Dify下载成功。Status显示Running表示正在运行。
03
本地部署DeepSeek
这里需要部署的是DeepSeek以及bge-large。DeepSeek的部署方法参考我之前的写的部署教程
同时在ollama中搜索bge-large。点击进入后复制命令
在命令窗口中执行复制的命令进行下载。
04
Dify配置大模型
在浏览器中输入:http://localhost/signin
来到dify的登录界面进行登录
进入设置
在模型供应商中找到ollama,点击添加大模型
基础URL填 http://host.docker.internal:11434
其他的都不变,点击保存。
添加完后能看到对应的模型
再继续添加Text Embedding。这是为知识库添加bge-large模型
添加完成后,能看到2个模型。这样就算配置完了
05
搭建知识库
来到Dify的主界面,点击知识库。创建新的知识库
上传文档,点击下一步
知识库 的配置可以采用默认的,拉到最下面点击保存并处理
会进行知识库的创建,显示嵌入已完成。代表知识库导入成功
点击前往文档,可以看到文档已经被分段处理。
06
创建应用
在工作室中创建空白应用
创建聊天助手
在聊天界面中点击添加上下文,也就是你创建的知识库。
将刚才创建的知识库导入进去。
此时在右边的对话框中就可以输入,大模型会根据知识库进行查询。在最后的界面中能看到引用自刚才创建的知识库文件。
知识库创建好后,你可以本地使用,如果想外部访问这个知识库,可以添加外部知识库API。配置好API Endpoint后就可以。
当然,想要让外部访问到,你自己的机器网络也需要在公网上。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。