Python 推导式是一种独特的数据处理方式,可以从一个数据序列构建另一个新的数据序列的结构体。
Python 支持各种数据结构的推导式:
- 列表(list)推导式
- 字典(dict)推导式
- 集合(set)推导式
- 元组(tuple)推导式
列表推导式
列表推导式格式为:
[表达式 for 变量 in 列表] [out_exp_res for out_exp in input_list] 或者 [表达式 for 变量 in 列表 if 条件] [out_exp_res for out_exp in input_list if condition]
- out_exp_res:列表生成元素表达式,可以是有返回值的函数。
- for out_exp in input_list:迭代 input_list 将 out_exp 传入到 out_exp_res 表达式中。
- if condition:条件语句,可以过滤列表中不符合条件的值。
过滤掉长度小于或等于3的字符串列表,并将剩下的转换成大写字母:
实例
>>> names = ['Bob','Tom','alice','Jerry','Wendy','Smith']
>>> new_names = [name.upper()for name in names if len(name)>3]
>>> print(new_names)
['ALICE', 'JERRY', 'WENDY', 'SMITH']
计算 30 以内可以被 3 整除的整数:
实例
>>> multiples = [i for i in range(30) if i % 3 == 0]
>>> print(multiples)
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
字典推导式
字典推导基本格式:
{ key_expr: value_expr for value in collection } 或 { key_expr: value_expr for value in collection if condition }
使用字符串及其长度创建字典:
实例
listdemo = ['Google','Runoob', 'Taobao']
# 将列表中各字符串值为键,各字符串的长度为值,组成键值对
>>> newdict = {key:len(key) for key in listdemo}
>>> newdict
{'Google': 6, 'Runoob': 6, 'Taobao': 6}
提供三个数字,以三个数字为键,三个数字的平方为值来创建字典:
实例
>>> dic = {x: x**2 for x in (2, 4, 6)}
>>> dic
{2: 4, 4: 16, 6: 36}
>>> type(dic)
<class 'dict'>
集合推导式
集合推导式基本格式:
{ expression for item in Sequence } 或 { expression for item in Sequence if conditional }
计算数字 1,2,3 的平方数:
实例
>>> setnew = {i**2 for i in (1,2,3)}
>>> setnew
{1, 4, 9}
判断不是 abc 的字母并输出:
实例
>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{'d', 'r'}
>>> type(a)
<class 'set'>
元组推导式(生成器表达式)
元组推导式可以利用 range 区间、元组、列表、字典和集合等数据类型,快速生成一个满足指定需求的元组。
元组推导式基本格式:
(expression for item in Sequence ) 或 (expression for item in Sequence if conditional )
元组推导式和列表推导式的用法也完全相同,只是元组推导式是用 () 圆括号将各部分括起来,而列表推导式用的是中括号 [],另外元组推导式返回的结果是一个生成器对象。
例如,我们可以使用下面的代码生成一个包含数字 1~9 的元组:
实例
>>> a = (x for x in range(1,10))
>>> a
<generator object <genexpr> at 0x7faf6ee20a50> # 返回的是生成器对象
>>> tuple(a) # 使用 tuple() 函数,可以直接将生成器对象转换成元组
(1, 2, 3, 4, 5, 6, 7, 8, 9)
最后
如果对Python感兴趣的话,可以试试我的学习方法以及相关的学习资料
Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
三、精品Python学习书籍
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、Python练习题
检查学习结果。
七、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
大家拿到脑图后,根据脑图对应的学习路线,做好学习计划制定。根据学习计划的路线来逐步学习,正常情况下2个月以内,再结合文章中资料,就能够很好地掌握Python并实现一些实践功能。