Python与数学题目——循环矩阵和快速傅立叶变换

本文介绍了循环矩阵的构造方法,以及它与快速傅立叶变换(FFT)的关系,特别强调了循环矩阵的特征向量与FFT矩阵列的对应性。通过Python和NumPy示例,展示了如何利用这些概念进行矩阵操作和可视化。
摘要由CSDN通过智能技术生成

循环矩阵是一个方矩阵,其中每一行都是前一行的旋转。这篇文章将说明循环矩阵和FFT(快速傅立叶变换)之间的联系。

循环矩阵

根据需要为第一行上色。然后将最后一个元素移到前面,形成下一行。重复此过程,直到矩阵已满。

NumPy(Python里的数值计算库)函数来进行旋转。它的第一个参数是要旋转的行,第二个参数是需要旋转的次数。因此,下面的Python代码生成一个大小为N的随机循环矩阵。

这是矩阵M,其中的条目被截断到小数点后3位,以便于阅读。

快速傅立叶变换

快速傅立叶变换是一种线性变换,因此它可以用矩阵表示。这是N乘N矩阵,其(j,k)项为ωjk,其中ω=exp(-2πi/N),j和k从0到N–1。

FFT矩阵的每个元素都对应于一个旋转,因此您可以使用每个条目中的时钟或通过颜色循环来可视化矩阵。现在使用钟面和颜色创建了一个可视化的变换:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值