缓存穿透、缓存雪崩、缓存击穿

背景

在现代软件架构中,缓存的应用已经非常普及。缓存的使用在面试和实践中都是避不开的硬技能、硬知识,如果你说还不太熟悉缓存的使用,可能都不好意思说自己是程序员。


这篇文章,带大家进一步学习在缓存使用中不得不考虑三个特殊场景:缓存穿透、缓存雪崩、缓存击穿。

为什么说不得不考虑?因为如果不考虑这些特殊的场景,在高并发的情况可能直接导致系统崩溃。下面以常见的Redis缓存组件为例来讲解这三种场景及解决方案。

大前提

当我们使用缓存时,目标通常有两个:第一,提升响应效率和并发量;第二,减轻数据库的压力。

而本文中所提到的这三种场景:缓存穿透、缓存雪崩和缓存击穿的发生,都是因为在某些特殊情况下,缓存失去了预期的功能所致。

当缓存失效或没有抵挡住流量,流量直接涌入到数据库,在高并发的情况下,可能直接击垮数据库,导致整个系统崩溃。

这就是我们需要知道的大前提,而缓存穿透、缓存雪崩和缓存击穿,只不过是在这个大前提下的不同场景的细分场景而已。

缓存穿透

大多数情况,缓存可以减少数据库的查询,提升系统性能。

通常流程是:一个请求过来,先查询是否在缓存当中,如果缓存中存在,则直接返回。如果缓存中不存在对应的数据,则检索数据库,如果数据库中存在对应的数据,则更新缓存并返回结果。如果数据库中也不存在对应的数据,则返回空或错误。

缓存穿透(cache penetration)是用户访问的数据既不在缓存当中,也不在数据库中。出于容错的考虑,如果从底层数据库查询不到数据,则不写入缓存。这就导致每次请求都会到底层数据库进行查询,缓存也失去了意义。当高并发或有人利用不存在的Key频繁攻击时,数据库的压力骤增,甚至崩溃,这就是缓存穿透问题。

acc6a22554c545dc81836949685185b9.jpeg缓存穿透

缓存穿透发生的场景一般有两类:

  • 原来数据是存在的,但由于某些原因(误删除、主动清理等)在缓存和数据库层面被删除了,但前端或前置的应用程序依旧保有这些数据;
  • 恶意攻击行为,利用不存在的Key或者恶意尝试导致产生大量不存在的业务数据请求。

缓存穿透通常有四种解决方案,我们逐一介绍分析。

方案一:缓存空值(null)或默认值

分析业务请求,如果是正常业务请求时发生缓存穿透现象,可针对相应的业务数据,在数据库查询不存在时,将其缓存为空值(null)或默认值。需要注意的是,针对空值的缓存失效时间不宜过长,一般设置为5分钟之内。当数据库被写入或更新该key的新数据时,缓存必须同时被刷新,避免数据不一致。

方案二:业务逻辑前置校验

在业务请求的入口处进行数据合法性校验,检查请求参数是否合理、是否包含非法值、是否恶意请求等,提前有效阻断非法请求。比如,根据年龄查询时,请求的年龄为-10岁,这显然是不合法的请求参数,直接在参数校验时进行判断返回。

方案三:使用布隆过滤器请求白名单

在写入数据时,使用布隆过滤器进行标记(相当于设置白名单),业务请求发现缓存中无对应数据时,可先通过查询布隆过滤器判断数据是否在白名单内,如果不在白名单内,则直接返回空或失败。

方案四:用户黑名单限制

当发生异常情况时,实时监控访问的对象和数据,分析用户行为,针对故意请求、爬虫或攻击者,进行特定用户的限制;

当然,可能针对缓存穿透的情况,也有可能是其他的原因引起,可以针对具体情况,采用对应的措施。

缓存雪崩

在使用缓存时,通常会对缓存设置过期时间,一方面目的是保持缓存与数据库数据的一致性,另一方面是减少冷缓存占用过多的内存空间。

但当缓存中大量热点缓存采用了相同的实效时间,就会导致缓存在某一个时刻同时实效,请求全部转发到数据库,从而导致数据库压力骤增,甚至宕机。从而形成一系列的连锁反应,造成系统崩溃等情况,这就是缓存雪崩(Cache Avalanche)。

d6d6b7ec6fccf9f38cf275a9b224eb25.jpeg缓存雪崩

上面讲到的是热点key同时失效的场景,另外就是由于某些原因导致缓存服务宕机、挂掉或不响应,也同样会导致流量直接转移到数据库。

所以,缓存雪崩的场景通常有两个:

  • 大量热点key同时过期;
  • 缓存服务故障;

缓存雪崩的解决方案:

  • 通常的解决方案是将key的过期时间后面加上一个随机数(比如随机1-5分钟),让key均匀的失效。
  • 考虑用队列或者锁的方式,保证缓存单线程写,但这种方案可能会影响并发量。
  • 热点数据可以考虑不失效,后台异步更新缓存,适用于不严格要求缓存一致性的场景。
  • 双key策略,主key设置过期时间,备key不设置过期时间,当主key失效时,直接返回备key值。
  • 构建缓存高可用集群(针对缓存服务故障情况)。
  • 当缓存雪崩发生时,服务熔断、限流、降级等措施保障。

缓存击穿

缓存雪崩是指只大量热点key同时失效的情况,如果是单个热点key,在不停的扛着大并发,在这个key失效的瞬间,持续的大并发请求就会击破缓存,直接请求到数据库,好像蛮力击穿一样。这种情况就是缓存击穿(Cache Breakdown)。

1bed57f84334d09db02731a818db7f4f.jpeg缓存击穿

从定义上可以看出,缓存击穿和缓存雪崩很类似,只不过是缓存击穿是一个热点key失效,而缓存雪崩是大量热点key失效。因此,可以将缓存击穿看作是缓存雪崩的一个子集。

缓存击穿的解决方案:

  • 使用互斥锁(Mutex Key),只让一个线程构建缓存,其他线程等待构建缓存执行完毕,重新从缓存中获取数据。单机通过synchronized或lock来处理,分布式环境采用分布式锁。
  • 热点数据不设置过期时间,后台异步更新缓存,适用于不严格要求缓存一致性的场景。
  • ”提前“使用互斥锁(Mutex Key):在value内部设置一个比缓存(Redis)过期时间短的过期时间标识,当异步线程发现该值快过期时,马上延长内置的这个时间,并重新从数据库加载数据,设置到缓存中去。

小结

本文介绍了在使用缓存时经常会遇到的三种异常情况:缓存穿透、缓存雪崩和缓存击穿。

三种异常情况从根本上来说都是因为本应该访问缓存的,但是缓存不存在或服务异常,导致流量直接进入了数据库层面。

其中缓存雪崩和缓存击穿是因为数据不存在(或服务异常获取不到),导致大量请求访问数据库,从而导致数据库压力骤增,甚至崩溃。

而缓存穿透则是由于数据本身就不存在,导致缓存没有进行数据缓存,流量进入数据库层。

针对不同的缓存异常场景,可选择不同的方案来进行处理。当然,除了上述方案,我们还可以限流、降级、熔断等服务层的措施,也可以考虑数据库层是否可以进行横向扩展,当缓存异常发生时,确保数据库能够抗住流量,不至于让整个系统崩溃。

缓存穿透缓存击穿缓存雪崩是常见的缓存问题,下面是关于Redis缓存穿透缓存击穿缓存雪崩的介绍: 1. 缓存穿透缓存穿透是指当一个请求查询一个不存在于缓存中的数据时,由于缓存无法命中,请求会直接访问数据库。这种情况下,如果有大量的请求查询不存在的数据,会导致数据库压力过大,影响系统性能。 2. 缓存击穿缓存击穿是指当一个热点数据的缓存过期或失效时,大量的请求同时访问该数据,导致缓存无法命中,请求会直接访问数据库。这种情况下,数据库会承受巨大的压力,可能导致数据库崩溃。 3. 缓存雪崩缓存雪崩是指当缓存中的大量数据同时过期或失效时,大量的请求会直接访问数据库,导致数据库压力剧增,性能下降甚至系统崩溃。缓存雪崩通常是由于缓存服务器故障、缓存设置不合理或者缓存数据过期时间设置不当等原因引起的。 为了避免缓存穿透缓存击穿缓存雪崩问题,可以采取以下措施: - 缓存穿透:可以在应用层对查询的数据进行校验,如果数据不存在,则不进行缓存操作,避免大量无效的请求访问数据库。 - 缓存击穿:可以互斥锁或分布式锁来保护热点数据的问,当缓存失效时,只允许一个请求访问数据库并更新缓存,其他请求等待缓存更新完成后再从缓存中获取数据。 - 缓存雪崩:可以采用多级缓存、缓存预热、设置合理的缓存过期时间等策略来避免大量缓存同时失效,保证系统的稳定性和性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老王的代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值