学习机器学习深度学习之后,还需要掌握传统算法和数据结构吗?

无论是机械学习、深度学习、传统算法还是数据结构,这些计算机科学的内容在面对应用时,都是手段而不是目的,换言之,这四个之间哪个都不是绝对万能的,在面对到不同的场景和不同的问题时,都要结合现实生活中的实际应用情况,来决定使用哪个工具,或者说哪几个工具一起组合使用。

而相比于机器学习和深度学习,传统的算法和数据结构是计算机科学的基石,它们为许多问题提供了基本的解决方案,而不仅仅局限于机器学习。有时候,高效的算法和数据结构能够显著加速机器学习任务,尤其是在数据预处理、特征工程和后处理阶段。同时最值得注意的是如果你正在求职或计划在技术领域工作,许多公司在面试时都会询问传统算法和数据结构的知识,因为这些知识体现了求职者的计算机科学基础。

但是这个问题本身又值得探讨,毕竟随着科技的日益发展,深度学习和机器学习在众多领域都取得了惊人的成果。无论是自动驾驶的汽车、准确率惊人的医疗诊断工具,还是能够预测金融市场走向的模型,它们无处不在。

就如可以被大众所用的chatgpt,其独特的AI属性基本上是在碾压许多传统的老算法,但是在这些高级技术的背后,传统的算法和数据结构是否还是作为程序员的一种刚需?

这里就不得不让我们再次审视深度学习和机器学习的局限性,虽然它们在很多问题上表现得相当出色,但并不是所有场景都适用。深度学习模型,为了达到最佳性能,常常需要依赖大量的标记数据。在一些领域,例如稀有疾病的医学研究或某些特定领域的学术研究中,获取大量、高质量的数据几乎是不可能的。此外,深度学习的模型复杂,需要高昂的计算成本,而且它们的“黑盒”性质使得它们在某些需要高度透明度的应用中,例如法律和医疗决策,变得难以应用。

与此相反,传统算法和数据结构有其独特的价值。如果说人工智能是一个人的大脑,那它们有时候更像是“工具箱”中的工具,可以直接应用于特定问题,提供直接、明确且可解释的答案。就举一个最直接的例子,在搜索引擎中,百度和Bing背后所使用的倒排索引数据结构和PageRank算法,它们都是经典算法和数据结构的应用,当你在百度中输入一个查询时,这些经典的数据结构和算法在后台迅速地为你找到相关结果。

如果把目光放到我们日常的交通当中,就比如交通导航系统,每当我们输入一个目的地,系统如何为我们规划出最佳路线?答案是经典的Dijkstra和A*算法,其使用优先级队列,该队列按照从起点到节点的已知最短距离来对节点进行排序,通过不断地从队列中取出距离最短的节点并更新其邻居的距离,并为我们提供了最快的路线建议。

此时如果选择用AI来帮我们计算距离,这确实是一种可行的办法,但是毕竟AI的算法太过于复杂,运算时间往往会耽误我们的出行,所以在不同情况下,传统算法所构建的软件更适合我们日常的使用。

此外,大多数现代的数据库系统,在其核心也深深地植入了传统的数据结构,如B树、红黑树和哈希表等,这些数据结构保证了数据检索、插入和删除的高效性。例如,当我们在电商网站上搜索一个产品,或者在社交媒体上查找一个朋友,背后正是这些数据结构在默默地为我们服务。
 

不仅如此,现代的数据压缩技术,如我们经常用到的ZIP、RAR等格式,其背后所用的Huffman编码或LZ77等算法,这些都是传统的算法技术。这些算法在数据存储和网络传输中起到了至关重要的作用,帮助我们高效地保存和分享数据。

此时把目光放到我们耳熟能详的电商平台,就比如在日常生活中的淘宝和天猫,需要为一个客户分配一个订单,它可能需要考虑数百或数千个仓库和配送中心的库存情况。此时,类似于“旅行商问题”的算法便开始发挥作用,帮助这些平台在众多可能的选择中找到最优解。

此外,在计算机图形学、游戏设计和机器人技术等领域,经典的算法和数据结构也占据着中心地位,通过使用特定的数据结构,例如八叉树或kd树,它们可以有效地加速光线跟踪、碰撞检测等复杂的计算过程。

总而言之,深度学习和机器学习无疑改变了我们处理和解决问题的方式,为我们打开了许多新的可能性。但这并不意味着传统的算法和数据结构已经失去了它们的重要性。事实上,它们仍然是计算领域的基石,为我们提供了稳固、可靠且高效的解决方案。

在这个飞速发展的科技时代,要想成为一名真正出色的程序员,单单掌握机器学习和深度学习是远远不够的,传统的算法和数据结构,作为计算领域的基础,是每个人都应当深入学习和掌握的知识。

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

二、Python必备开发工具

三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、Python练习题

检查学习结果。

六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

 最后祝大家天天进步!!

上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值