全面解析:Stable Diffusion的本地化部署教程——涵盖手动、自动及整合包三种方法

前言:

Stable Diffusion模型以其强大的图像生成能力,为用户提供了从文本描述到高清图像的直接转换体验。本安装指南旨在帮助您顺利地部署Stable Diffusion环境,让您轻松上手这一先进技术。跟随以下步骤,我们将一起完成模型的安装与配置,开启您的AI图像创作之旅。以下是详细的安装步骤,助您一臂之力。

Stable Diffusion秋叶整合包,一键安装Stable Diffusion,门槛极低,完全免费,支持Nvidia全系列显卡。

来自B站up主秋葉aaaki近期推出的Stable Diffusion整合包v4.9版本,能够让零基础用户轻松在本地部署Stable Diffusion,适合希望使用AI绘画的朋友。

这份完整版的SD整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述

Stable Diffusion(SD)是什么?

Stable Diffusion是一款2022年发布的文本到图像生成模型,由Stability AI公司与多个学术研究者和非营利组织合作开发。其源代码和模型已经开源,由AUTOMATIC1111在Github上维护一个完整项目,得到全球开发者的共同维护。开源社区对Stable Diffusion的普及做出了重大贡献。

该模型最大特点是开源,可在电脑本地离线运行,适用于大部分配备至少8GB显存的中等性能GPU。推荐的显存为12G。

AI训练与输出结合了深度学习的软硬件原理,常用到Nvidia显卡及相关的CUDA、CUDNN技术,以及xformer、pytorch等深度学习组件。对于希望深入学习AI的用户来说,这些技术需要大量额外的编程学习,可能会感到困难。而秋叶整合包则大大简化了部署过程,使其更易于理解和实施。

Stable Diffusion的基本概念:

大模型:结合素材与SD低模(如SD1.5/SD1.4/SD2.1)经深度学习炼制而成的高级模型,直接用于生成图片。大模型是决定出图大方向的基础底料,主要扩展名为CKPT/SAFETENSORS。

VAE:类似于滤镜,对大模型进行补充,稳定画面色彩范围,常见扩展名同样为CKPT/SAFETENSORS。

LoRA:基于特定大模型深度学习炼制的模型插件,需配合大模型使用,能在中小范围内调整出图风格或补充大模型缺失的元素。根据SD底模炼制的LoRA在不同大模型间切换时具有较好的通用性,而基于特定大模型炼制的LoRA可能在配合时展现出更佳的效果。ControlNet:高级模型插件,赋予SD“视觉”,能基于现有图片获取线条或景深信息,进而用于图片处理。

Stable Diffusion Web-UI(SD-WEBUI):由开源大师AUTOMATIC1111基于Stability AI算法开发的软件,支持通过图形界面在浏览器中操作SD。

秋叶包:中国开发者秋叶制作的整合包,考虑到WEBUI基于GitHub的部署通常需高网络和Python环境支持,秋叶包内置隔离的Python环境和Git,无需深入了解这两软件即可运行,极大降低了使用门槛,使更多人能享受AI绘图乐趣。

如何安装Stable Diffusion秋叶整合包?

  1. 确认配置要求:
  • 系统:需运行Windows 10或更高版本的操作系统。

  • 显卡:推荐使用Nvidia品牌的独立显卡,并确保显存容量达到6GB以上。若仅用于生成图像,6GB显存足够;若计划进行模型训练,则建议显存容量为12GB以上。

查看显卡型号的步骤:

  • 在电脑左下角的Windows图标上右键点击;

  • 选择“设备管理器”;

  • 在设备管理器中找到“显示适配器”,即可查看显卡型号信息。

  1. 文件下载与解压:
  • 可从指定来源免费下载文件至本地电脑,并将文件解压至D盘。注意,解压路径最好不包含中文目录,以避免可能的兼容性问题。

一、打开下载好的安装包(文末获取)

1、安装

2、安装中

二、解压启动AI绘画

1、解压

2、启动

三、开始使用

四、 下载模型和安装模型路径

1.安装路径

2. 模型下载地址根据需求下载

3.放进对应的目录后刷新后,就可以在左边选择对应的模型。

五、 Controlnet插件安装

1.打开webui复制下方链接到图片中的指示位置点击安装

https://jihulab.com/hanamizuki/sd-webui-controlnet

2. Controlnet模型安装(文章末下载) 根据图片路径移动模型文件过去

3. 回到webui重启

这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值