ComfyUI 放大革命:InvSR 技术让 4K 高清触手可及,8G 显存无压力!

0****1

介绍

deepseek流量虽然,但是我们还是回到熟悉ComfyUI领域,今天介绍一个最新的一个放大插件InvSR,效果不错,大家可以都安装试试。

这项研究提出了一种基于扩散反转的新图像超分辨率(SR)技术,旨在利用封装在大型预训练的扩散模型中的丰富图像先验以提高SR性能。我们设计一个\ textIt {部分噪声预测}策略来构建扩散模型的中间状态,该模型是起始采样点。我们方法的核心是深度噪声预测指标,以估计正向扩散过程的最佳噪声图。

经过训练后,该噪声预测器可用于沿扩散轨迹部分初始化采样过程,从而产生理想的高分辨率结果。与现有方法相比,我们的方法提供了一种灵活有效的采样机制,该机制支持任意数量的采样步骤,范围从一到五。即使采用单个采样步骤,我们的方法也表现出比最近最新方法的优越或可比的性能。

这份完整版的comfyui工作流整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

02

相关安装

2.1插件安装

插件地址:

https://github.com/yuvraj108c/ComfyUI_InvSR

该插件无法在节点管理器安装,自己下载了丢到custom_nodes

或者使用命令在cmd窗口下

git clone https://github.com/zsyOAOA/InvSR.git

2.2 模型安装

模型的话有两个

models–stabilityai–sd-turbo

noise_predictor_sd_turbo_v5.pth

路径分别如下截图所示,文末会提示模型网盘链接

03

使用说明

InvSR用起来很简单,就一个节点呢

参数说明:

num_steps :推理步骤数,默认1,最大5,越大细节越多,越容易崩

cfg :引导系数,默认1

batch_size :控制同时处理多少个完整图像

chopping_batch_size :分块并行处理,值越大越占用显存,速度也相对快一些,这个显存不够的小伙伴适当的调小这个值就可以了。

chopping_size :4k就是128,默认这个参数,没有更低的

color_fix :修复加工图像中颜色转移的方法

下面是使用效果对比,还可以,纳入我的放大插件收藏库了~

04

总结

以上就是这个放大插件InvSR的效果了,体验下来效果不错,默认就是4k放大,处理时间也还行。

技术的迭代是飞快的,要关注最新的消息才不会掉队。

这份完整版的comfyui工作流整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值