0****1
介绍
deepseek流量虽然,但是我们还是回到熟悉ComfyUI领域,今天介绍一个最新的一个放大插件InvSR,效果不错,大家可以都安装试试。
这项研究提出了一种基于扩散反转的新图像超分辨率(SR)技术,旨在利用封装在大型预训练的扩散模型中的丰富图像先验以提高SR性能。我们设计一个\ textIt {部分噪声预测}策略来构建扩散模型的中间状态,该模型是起始采样点。我们方法的核心是深度噪声预测指标,以估计正向扩散过程的最佳噪声图。
经过训练后,该噪声预测器可用于沿扩散轨迹部分初始化采样过程,从而产生理想的高分辨率结果。与现有方法相比,我们的方法提供了一种灵活有效的采样机制,该机制支持任意数量的采样步骤,范围从一到五。即使采用单个采样步骤,我们的方法也表现出比最近最新方法的优越或可比的性能。
这份完整版的comfyui工作流整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
02
相关安装
2.1插件安装
插件地址:
https://github.com/yuvraj108c/ComfyUI_InvSR
该插件无法在节点管理器安装,自己下载了丢到custom_nodes
或者使用命令在cmd窗口下
git clone https://github.com/zsyOAOA/InvSR.git
2.2 模型安装
模型的话有两个
models–stabilityai–sd-turbo
noise_predictor_sd_turbo_v5.pth
路径分别如下截图所示,文末会提示模型网盘链接
03
使用说明
InvSR用起来很简单,就一个节点呢
参数说明:
num_steps :推理步骤数,默认1,最大5,越大细节越多,越容易崩
cfg :引导系数,默认1
batch_size :控制同时处理多少个完整图像
chopping_batch_size :分块并行处理,值越大越占用显存,速度也相对快一些,这个显存不够的小伙伴适当的调小这个值就可以了。
chopping_size :4k就是128,默认这个参数,没有更低的
color_fix :修复加工图像中颜色转移的方法
下面是使用效果对比,还可以,纳入我的放大插件收藏库了~
04
总结
以上就是这个放大插件InvSR的效果了,体验下来效果不错,默认就是4k放大,处理时间也还行。
技术的迭代是飞快的,要关注最新的消息才不会掉队。
这份完整版的comfyui工作流整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】