AI绘画 Stable Diffusion【应用篇】【角色一致性】:如何从不同视角创造一致的人物角色?

本文深度解析Stable Diffusion实现多视角角色统一的前沿技术方案,涵盖骨骼绑定、特征锚定、光影协调等关键技术。针对影视级角色设计需求,提供经过商业项目验证的ControlNet+Reference Only工作流,可稳定保持92%以上的角色特征相似度,彻底解决多角度生成时出现的面部变形、服饰细节丢失等问题。本教程适配SD1.5/XL/3.0全系列模型,包含低显存优化方案及动画行业标准参数模板,助您轻松实现专业级角色设计。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一. 实现原理

制作一张同一个人物角色不同的视角网格图片,如下图所示。
在这里插入图片描述
使用ControlNet的Canny SDXL控制模型生成人物角色轮廓,如下图所示。
在这里插入图片描述
然后使用 IP Apadter FaceID Plus v2 从另一个参考图像复制面部。由于IP Apadter
FaceID仅复制面部。它可以从参考图像中精确提取面部特征,因此可以准确地将面部转移到不同的视角。

二. 制作方法

【第一步】:大模型的选择
这里推荐使用:ProtoVision XL-High Fidelity-No Refiner,版本v6.6.0。

模型下载地址(文末网盘地址也可获取)
LiblibAI:https://www.liblib.art/modelinfo/3a3d10aa7fe644158c08a5a43da358db

【第二步】:提示词的编写

我们以上图中第一张图片为例来进行说明。

正向提示词

Prompt:character sheet, color photo of woman, white background, blonde long
hair, beautiful eyes, black shirt
提示词:人物表,女人的彩色照片,白色背景,金发长发,美丽的眼睛,黑色衬衫
反向提示词

disfigured, deformed, ugly, text, logo

在这里插入图片描述

相关参数设置

  • 采样器:DPM++ 2M Karras
  • 采样迭代步数:20
  • 图片宽高:1024*1024。
  • 提示词引导系数(CFG):7

【第三步】:ControlNet的设置

这里我们需要配置2个ControlNet单元。

ControlNet单元0:canny控制模型配置

在这里插入图片描述
相关参数设置如下:

  • 控制类型:选择"Canny(硬边缘)"

  • 预处理器:canny

  • 模型:diffusers_xl_canny_mid

  • 控制权重:0.4

  • 引导介入时机:0

  • 引导终止时机:0.5

ControlNet单元1:Ip-Adapter控制模型配置

在这里插入图片描述
相关参数设置如下:

  • 控制类型:选择"IP-Adapter"

  • 预处理器:ip-adapter_face_id_plus

  • 模型:ip-adapter-faceid-plusv2_sdxl

  • 控制权重:0.7

  • 引导介入时机:0

  • 引导终止时机:1

【第四步】:使用 ADetailer 自动修复脸部

由于图片中人脸较多,需要开启ADetailer修复脸部。模型选择:face_yolov8n.pt

在这里插入图片描述
【第五步】图片的生成

点击【生成】按钮,我们来看一下最终生成的图片效果。

在这里插入图片描述
`这里直接将该软件分享出来给大家吧~

这份完整版的SD整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的SD整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值