函数进阶
变量作用域
1.变量作用域
变量作用域指的是变量定义完成后可以使用的有效范围。
根据变量作用域的不同,可以将变量分为全局变量和局部变量两种。
2.全局变量和局部变量
1)全局变量
python中没有定义在函数中或者类中的变量默认都是全局变量。
作用域:从定义开始到程序结束
2)局部变量
定义在函数中的变量就是局部变量(形参也是局部变量)
作用域:从定义开始到函数结束
3.全局变量和局部变量的存储原理
1)全局变量默认保存在全局栈区间,全局栈区间会在程序结束后自动释放。
2)调用函数的时候系统会自动为这个函数创建一个临时栈区间,用来保存在函数中产生的数据(局部变量就是保存在函数对应的临时栈区间中的),函数对应的临时栈区间会在函数调用结束的时候自动释放。
3)在函数中可以通过关键字global修改局部变量的保存方式,让局部变量保存在全局栈区间中。
a.在函数内部定义全局变量用global
b.在函数内部修改全局变量的值用global
匿名函数
1.匿名函数 - 没有名字的函数
函数名 = lambda 形参列表:返回值
相当于:
def 函数名(形参列表):
return 返回值
注意:
1)匿名函数的形参至少一个
2)匿名函数的调用和普通函数一样
3)无默认值的类型说明在匿名函数中不能使用
# 案例:定义一个匿名函数,求任意两个数的和
sum_2 = lambda num1, num2: num1 + num2
print(sum_2(100,200)) # 300
result = sum_2(num1=10,num2=20)
print(result) # 30
# 练习:定义一个匿名函数,判断指定的年是否是闰年
is_runnian = lambda year : year % 4 == 0 and year % 100 !=0 or year % 400 == 0
print(is_runnian(2000))
高阶函数
1.实参高阶函数
函数的参数是函数的函数就是实参高阶函数
函数的参数是函数的函数就是实参高阶函数
给参数是函数的参数传参:a.使用普通函数函数名;b.使用匿名函数
**重点:**掌握系统或者第三方库提供的实参高阶函数的用法
常见的实参高阶:max、min、sorted、列表.sort、map、reduce
# func1就是实参高阶函数
def func1(x):
# x=t
x() # t()
def t():
print('t函数')
func1(t) # t函数
def func2(x):
# x = t2
print(x(10, 20) + 30) # print(t2(10,20)+30)
def t2(n1, n2):
# n1=10,n2=20
return n1 * n2 # return 200
func2(t2)
func2(lambda n1, n2: n1 + n2) # 60
常见的实参高阶函数
1.max、min、sorted、列表.sort
1)max(序列) - 直接比较序列中元素的大小求最大值
2)max(序列,key=函数) - 按照函数制定的规则比较序列中元素的大小获取最大值
函数的要求:
a.有且只有一个参数(这个参数代表序列中的每个元素)
b.有一个返回值(返回值就是比较对象)
nums = [83, 67, 19, 22, 80, 77, 93]
print(max(nums)) # 93
# 案例:求个位数最大的元素
nums = [83, 67, 19, 22, 80, 77, 93]
result = max(nums, key=lambda item: item % 10)
print(result) # 19
# 案例:就nums中绝对值最大的元素
nums = [8, -283, 89, 100, 82, -34]
result = max(nums, key=lambda item: item ** 2) # 绝对值最大 它的平方一定是最大的
print(result) # -283
# 案例:求students中分数最高的学生
students = [
{'name': 'stu1', 'age': 18, 'score': 90},
{'name': 'stu2', 'age': 22, 'score': 98},
{'name': 'stu3', 'age': 25, 'score': 78},
{'name': 'stu4', 'age': 19, 'score': 81},
{'name': 'stu5', 'age': 20, 'score': 92}
]
result = max(students,key=lambda item:item['score'])
print(result) # {'name': 'stu2', 'age': 22, 'score': 98}
# 案例:按照分数的高低对学生从大到小排序
result = sorted(students,key=lambda item:item['score'],reverse=True)
print(result)
# 练习1:求list1中长度最长的字符串
list1 = ['你好', 'hello', 'how are you', 'thank you! and you?', '好好学习,天天向上']
result = max(list1,key=lambda item:len(item))
print(result) # thank you! and you?
# 练习2:求nums中十位数最小的元素
nums = [92, 129, 37, 99, 150, 501]
result = min(nums,key=lambda item:item//10%10)
print(result) # 501
# 练习3:将所有的学生按照年龄值从小到大排序
students = [
{'name': 'stu1', 'age': 18, 'score': 90},
{'name': 'stu2', 'age': 22, 'score': 98},
{'name': 'stu3', 'age': 25, 'score': 78},
{'name': 'stu4', 'age': 19, 'score': 81},
{'name': 'stu5', 'age': 20, 'score': 92}
]
result = sorted(students,key=lambda item:item['age'])
print(result)
# 练习4:求nums中各个位之和最大的元素
nums = [123, 78, 90, 201, 192, 330]
# 方法1 匿名函数 sum
result = max(nums,key=lambda item:sum(int(x) for x in str(item)))
print(result) # 78
# 方法2 匿名函数 eval方法
result = max(nums,key=lambda item:eval('+'.join(str(item))))
print(result) # 78
# 方法3 普通函数
def t(item):
sum1 = 0
for x in str(item):
sum1 += int(x)
return sum1
result = max(nums,key=t)
print(result) # 78
2.map - 基于原序列中的元素创建一个新的序列
1)map(函数,序列) - 通过函数描述的规则基于序列中的元素创建一个新的序列
函数要求:
a.有且只有一个参数(代表后面的这个序列中每个元素)
b.有一个返回值(返回值就是新序列中元素)
2)map(函数,序列1,序列2)
函数要求:
a.有且只有两个参数(分别代表后面的两个序列中每个元素)
b.有一个返回值(返回值就是新序列中元素)
3)map(函数,序列1,序列2,序列3,…)
# 案例1:将nums中所有的元素乘以10
nums = [19,870,34,61,78]
result = map(lambda item:item*10,nums)
print(list(result)) # [190, 8700, 340, 610, 780]
# 案例2:获取nums中所有的元素的个位数
result = map(lambda item:item%10,nums)
print(list(result)) # [9, 0, 4, 1, 8]
# 案例3:将nums1和nums2中相同位置的元素相乘,得到一个新的序列
nums1 = [10,20,30,10]
nums2 = [23,30,20,55]
result = map(lambda i1,i2:i1*i2,nums1,nums2)
print(list(result)) # [230, 600, 600, 550]
# 练习1:获取names中每个人的姓
names = ['何晓东', '张三', '李四', '王五', '王二', '赵六']
result = map(lambda item: item[0], names)
print(list(result)) # ['何', '张', '李', '王', '王', '赵']
# 练习2:
students = [
{'name': 'stu1', 'age': 18, 'score': 90},
{'name': 'stu2', 'age': 22, 'score': 98},
{'name': 'stu3', 'age': 25, 'score': 78},
{'name': 'stu4', 'age': 19, 'score': 81},
{'name': 'stu5', 'age': 20, 'score': 92}
]
subjects = ['电子信息', '金融数学', '园林设计', '经济', '计算机软件']
# ['电子信息-stu1', '金融数学-stu2', '园林设计-stu3', '经济-stu4', '计算机软件-stu5']
result = map(lambda i1, i2: f'{i2}-{i1["name"]}', students, subjects) # 字符串拼接
print(list(result))
3.reduce - 将序列中元素合并成一个数据(基于原序列中所有的元素得到一个数据)
reduce(函数,序列,初始值) - 按照函数制定的规则将序列中的元素合并成一个数据
函数要求:
a.有且只有两个参数(第一个参数指向初始值,第二个参数代表序列中的每个元素)
b.需要一个返回值(返回值就是合并规则)
初始值: 累积求数值和,初始值是0
累积求数值乘积,初始值是1
字符串合并,初始值是空串
from functools import reduce
nums = [12, 301, 40, 55, 112]
# 案例1:12+301+40+55+112的结果
result = reduce(lambda x, item: x + item, nums, 0)
print(result) # 520
# 案例2:12*301*40*55*112的结果
result = reduce(lambda x, item: x * item, nums, 1)
print(result) # 889996800
# 案例3:123014055112
result = reduce(lambda x, item: x + str(item), nums, '')
print(result) # 123014055112
# 练习:2+1+0+5+2
from functools import reduce
nums = [12, 301, 40, 55, 112]
result = reduce(lambda x, item: x + item % 10, nums, 0)
print(result) # 10