LeetCode62. 不同路径&&63. 不同路径 II

文章讨论了机器人在网格中从左上角到右下角的路径问题,包括无障碍物和有障碍物两种情况,利用动态规划方法求解路径总数。
摘要由CSDN通过智能技术生成

62. 不同路径&&63. 不同路径 II

1. 不同路径

第一题就是纯依赖关系的递推,类似于爬楼梯,当前状态依赖于前面已经处理过的状态,最前面即首元素或首行列的元素需要初始化
第二题就是依赖关系的不稳定,如果不依赖(即某个前者条件无法推出当前条件,或当前条件不可被推导)则应该跳过该次递推式计算
代码中:for的第二表达式为终止条件,一旦满足就break不会执行,而不是一定会执行完;

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?

示例 1:
在这里插入图片描述

输入:m = 3, n = 7
输出:28
示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向下
    示例 3:

输入:m = 7, n = 3
输出:28
示例 4:

输入:m = 3, n = 3
输出:6

提示:

1 <= m, n <= 100
题目数据保证答案小于等于 2 * 109

class Solution {
public:
	//m行n列
    int uniquePaths(int m, int n) {
   		//棋盘全初始化为0;
        vector<vector<int>> dp(m, vector<int>(n, 0));
        //首列首行任意点的路径可能性都为1
        for (int i = 0; i < m; i++) dp[i][0] = 1;
        for (int j = 0; j < n; j++) dp[0][j] = 1;
        //从第二行第二列开始遍历棋盘
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
            //dp数组表示到达该(i+1,j+1)这个点的所有路径可能性
            //每个点的可能性都取决于左边和上面点的可能性:因为只能走一步,向下向右走,所以到达该点要么从上面来的,要么从左边来的,故两个点的可能性之和为当前点的可能性.
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        //返回(i,j)点的可能性
        return dp[m - 1][n - 1];
    }
};

2. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:
在这里插入图片描述

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:

  1. 向右 -> 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右 -> 向右

示例 2:
在这里插入图片描述

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j] 为 0 或 1

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        //起终点处有障碍物则全局任一点的可能性为0
		if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1)return 0;
        vector<vector<int>> dp(m, vector<int>(n, 0));
        //for的第二条件表达式是终止表达式,即触发了第二条件表达式不满足就break不会继续执行
        //如果遇见障碍物,则首行首列第一个障碍物后面的点全部可能性为0
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
            //如果遍历到了障碍体,因为障碍体是不能当作终点的,所以跳过其递推式的计算
                if (obstacleGrid[i][j] == 1) continue;
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值