62. 不同路径&&63. 不同路径 II
1. 不同路径
第一题就是纯依赖关系的递推,类似于爬楼梯,当前状态依赖于前面已经处理过的状态,最前面即首元素或首行列的元素需要初始化
第二题就是依赖关系的不稳定,如果不依赖(即某个前者条件无法推出当前条件,或当前条件不可被推导)则应该跳过该次递推式计算
代码中:for的第二表达式为终止条件,一旦满足就break不会执行,而不是一定会执行完;
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右
- 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
提示:
1 <= m, n <= 100
题目数据保证答案小于等于 2 * 109
class Solution {
public:
//m行n列
int uniquePaths(int m, int n) {
//棋盘全初始化为0;
vector<vector<int>> dp(m, vector<int>(n, 0));
//首列首行任意点的路径可能性都为1
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
//从第二行第二列开始遍历棋盘
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
//dp数组表示到达该(i+1,j+1)这个点的所有路径可能性
//每个点的可能性都取决于左边和上面点的可能性:因为只能走一步,向下向右走,所以到达该点要么从上面来的,要么从左边来的,故两个点的可能性之和为当前点的可能性.
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
//返回(i,j)点的可能性
return dp[m - 1][n - 1];
}
};
2. 不同路径 II
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
示例 1:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
- 向右 -> 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右 -> 向右
示例 2:
输入:obstacleGrid = [[0,1],[0,0]]
输出:1
提示:
m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j] 为 0 或 1
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
//起终点处有障碍物则全局任一点的可能性为0
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1)return 0;
vector<vector<int>> dp(m, vector<int>(n, 0));
//for的第二条件表达式是终止表达式,即触发了第二条件表达式不满足就break不会继续执行
//如果遇见障碍物,则首行首列第一个障碍物后面的点全部可能性为0
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
//如果遍历到了障碍体,因为障碍体是不能当作终点的,所以跳过其递推式的计算
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};