图的遍历(简单版)
题目描述
给出 N N N 个点, M M M 条边的有向图,对于每个点 v v v,求 A ( v ) A(v) A(v) 表示从点 v v v 出发,能到达的编号最大的点。
输入格式
第 1 1 1 行 2 2 2 个整数 N , M N,M N,M,表示点数和边数。
接下来 M M M 行,每行 2 2 2 个整数 U i , V i U_i,V_i Ui,Vi,表示边 ( U i , V i ) (U_i,V_i) (Ui,Vi)。点用 1 , 2 , … , N 1,2,\dots,N 1,2,…,N 编号。
输出格式
一行 N N N 个整数 A ( 1 ) , A ( 2 ) , … , A ( N ) A(1),A(2),\dots,A(N) A(1),A(2),…,A(N)。
样例 #1
样例输入 #1
4 3
1 2
2 4
4 3
样例输出 #1
4 4 3 4
提示
- 对于 100 % 100\% 100% 的数据, 1 ≤ N , M ≤ 1 0 3 1 \leq N,M \leq 10^3 1≤N,M≤103。
#include<bits/stdc++.h>
using namespace std;
vector<int>e[1001];//邻接表存图:也可vector<vector<int>>e顶点不定数和规律用;
int ans[1001],n,m;
bool vis[1001];
void dfs(int start,int cur){//dfs遍历能到达的点,cur是当前点,start是起点
//标记已访问
vis[cur]=false;
//沿起点遍历下去的路径不断更新的cur值与最大值比较
ans[start]=max(ans[start],cur);
//遍历当前点的邻接表e[cur],第cur个邻接表vector,v为vector里的邻接点
for(auto v:e[cur])if(vis[v])dfs(start,v);//e[cur]存的是一个具体的vector,就像 int e的e存的是一个具体的int
}
int main(){
cin>>n>>m;
for(int i=1;i<=m;++i){//建图
int x,y;cin>>x>>y;
e[x].push_back(y);
}
for(int i=1;i<=n;++i){//虽然逻辑上这里应遍历顶点表,但是顶点是固定1-n,所以不写顶点表
memset(vis,true,sizeof(vis));//重置dfs的访问数组
dfs(i,i);//从该顶点开始遍历
}
for(int i=1;i<=n;++i)cout<<ans[i]<<" ";//输出
return 0;
}
/*
反向建边
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define TRACE 1
#define tcout TRACE && cout
#define fst ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#define int long long
#ifdef int
const int INF = 0x3f3f3f3f3f3f3f3f;
#else
const int INF = 0x3f3f3f3f;
#endif
const int P = 998244353;
const int N = 1e5 + 10, M = 1e5 + 10;
int n, m;
vector<int> g[N];
bool vis[N];
int a[N];
void dfs(int u, int i)
{
if(vis[u])
{
//如果这个点被别的点到达过, 则不能再走了
return;
}
vis[u] = 1;
a[u] = i;
for(auto v: g[u])
{
if(vis[v] == 0)
{
dfs(v, i);
}
}
}
signed main()
{
cin >> n >> m;
for(int i=1; i<=m; i++)
{
int u, v;
cin >> u >> v;
g[v].push_back(u);
}
for(int i=n; i>=1; i--)
{
dfs(i, i); //从i点出发, 能到哪个点, 就表示哪个点能到i
}
for(int i=1; i<=n; i++)
{
cout << a[i] << " ";
}
return 0;
}
*/