B3862 图的遍历(简单版)

图的遍历(简单版)

题目描述

给出 N N N 个点, M M M 条边的有向图,对于每个点 v v v,求 A ( v ) A(v) A(v) 表示从点 v v v 出发,能到达的编号最大的点。

输入格式

1 1 1 2 2 2 个整数 N , M N,M N,M,表示点数和边数。

接下来 M M M 行,每行 2 2 2 个整数 U i , V i U_i,V_i Ui,Vi,表示边 ( U i , V i ) (U_i,V_i) (Ui,Vi)。点用 1 , 2 , … , N 1,2,\dots,N 1,2,,N 编号。

输出格式

一行 N N N 个整数 A ( 1 ) , A ( 2 ) , … , A ( N ) A(1),A(2),\dots,A(N) A(1),A(2),,A(N)

样例 #1

样例输入 #1

4 3
1 2
2 4
4 3

样例输出 #1

4 4 3 4

提示

  • 对于 100 % 100\% 100% 的数据, 1 ≤ N , M ≤ 1 0 3 1 \leq N,M \leq 10^3 1N,M103
#include<bits/stdc++.h>
using namespace std;
vector<int>e[1001];//邻接表存图:也可vector<vector<int>>e顶点不定数和规律用; 
int ans[1001],n,m;
bool vis[1001];
void dfs(int start,int cur){//dfs遍历能到达的点,cur是当前点,start是起点 
	//标记已访问 
	vis[cur]=false;
	//沿起点遍历下去的路径不断更新的cur值与最大值比较 
	ans[start]=max(ans[start],cur);
	//遍历当前点的邻接表e[cur],第cur个邻接表vector,v为vector里的邻接点 
	for(auto v:e[cur])if(vis[v])dfs(start,v);//e[cur]存的是一个具体的vector,就像 int e的e存的是一个具体的int 
}
int main(){
	cin>>n>>m;
	for(int i=1;i<=m;++i){//建图 
		int x,y;cin>>x>>y;
		e[x].push_back(y); 
	}
	for(int i=1;i<=n;++i){//虽然逻辑上这里应遍历顶点表,但是顶点是固定1-n,所以不写顶点表 
		memset(vis,true,sizeof(vis));//重置dfs的访问数组 
		dfs(i,i);//从该顶点开始遍历 
	}
	for(int i=1;i<=n;++i)cout<<ans[i]<<" ";//输出 
	return 0;
}
/*
反向建边 
#include <bits/stdc++.h>

using namespace std;

#define endl '\n'

#define TRACE 1
#define tcout TRACE && cout

#define fst ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);

#define int long long

#ifdef int
const int INF = 0x3f3f3f3f3f3f3f3f; 
#else
const int INF = 0x3f3f3f3f;
#endif

const int P = 998244353; 
const int N = 1e5 + 10, M = 1e5 + 10; 

int n, m;
vector<int> g[N];

bool vis[N];

int a[N];

void dfs(int u, int i)
{
	if(vis[u])
	{
		//如果这个点被别的点到达过, 则不能再走了
		return;
	}
	vis[u] = 1;
	a[u] = i;
	for(auto v: g[u])
	{
		if(vis[v] == 0)
		{
			dfs(v, i);
		}
	}
}

signed main()
{
	cin >> n >> m;
	for(int i=1; i<=m; i++)
	{
		int u, v;
		cin >> u >> v;
		g[v].push_back(u);
	}
	for(int i=n; i>=1; i--)
	{
		dfs(i, i);	//从i点出发, 能到哪个点, 就表示哪个点能到i
	}
	for(int i=1; i<=n; i++)
	{
		cout << a[i] << " ";
	}
	return 0;
}
*/ 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值