四数相加II
- 题目:Leetcode454
- 思路:
- 为什么使用哈希法?
- 暴力解法使用四个循环遍历,时间复杂度为O(n^4)。若我们分别遍历nums1和nums2元素之和,将元素之和及其出现的次数存放在一个集合中;再遍历nums3和nums4元素之和,去集合中寻找使四数相加之和为0的匹配项,就可以把时间复杂度降低到O(n^2)。快速判断一个元素是否出现在集合里,考虑哈希法。
- 为什么使用unordered_map?
- 本题中元素为int型,数值可能很大,不适合用数组。
- 本题不仅要统计两数之和(key),还要统计次数(value),set不适用,选择map。
- 本题为四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况
- 为什么使用哈希法?
- 时间复杂度: O(n^2)
- 空间复杂度: O(n^2),最坏情况下A和B的值各不相同,相加产生的数字个数为 n^2
class Solution {
public:
int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
unordered_map<int, int> map;
for(int a: nums1) {
for(int b: nums2) {
map[a + b]++;//value统计nums1和nums2数组中a+b之和出现的次数
}
}
int count = 0;//统计a+b+c+d=0的次数
for(int c: nums3) {
for(int d: nums4) {
//在map中寻找c+d之和的负数target,即a+b
int target = 0 - (c + d);
if(map.find(target) != map.end()) {
//若找到target,则count加上对应的value中保存的次数
count += map[target];
}
}
}
return count;
}
};
赎金信
- 题目:Leetcode383
- 思路:与有效字母异位词思路相似
- 时间复杂度: O(n)
class Solution {
public:
bool canConstruct(string ransomNote, string magazine) {
//且称ransomNote为成品,magazine为原料
int hash[26] = {0};//需要的原料清单
//原料不足,无法打造成成品
if (ransomNote.size() > magazine.size()) {
return false;
}
//罗列成品所需要的所有原料及所需数量
for(int i = 0; i < ransomNote.size(); i++) {
hash[ ransomNote[i] - 'a']++;
}
//去原料中寻找,每找到一个,清单中对应数量减一
for(int i = 0; i < magazine.size(); i++) {
if(hash[magazine[i] - 'a'] > 0) {
hash[ magazine[i] - 'a']--;
}
}
for(int i = 0; i < 26; i++) {
//清单中数量全部减到0,说明全部找到,现有原料可打造出成品
if(hash[i] != 0) {
return false;
}
}
return true;
}
};
三数之和
- 题目:Leetcode15
- 思路:哈希法去重逻辑较复杂,本题使用双指针法。一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。本题重点是去重逻辑的思考。
- 时间复杂度: O(n^2)
- 空间复杂度: O(1)
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
/* 双指针法 */
vector<vector<int>> result;//存放结果
sort(nums.begin(), nums.end());//升序排序
//a = nums[i], b = nums[left], c = nums[right]
//a + b + c = 0
for(int i = 0; i < nums.size(); i++) {
//如果第一个数就大于0,那么就不存在和为0的三元组,直接返回结果
if(nums[i] > 0) {
return result;
}
//对a进行去重
if(i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while(left < right) {
if(nums[i] + nums[left] + nums[right] > 0) right--;
else if(nums[i] + nums[left] + nums[right] < 0) left++;
else {
//先收集结果
result.push_back(vector<int>{nums[i], nums[left], nums[right]});
//再对b c进行去重
while(left < right && nums[left] == nums[left+1]) left++;
while(left < right && nums[right] == nums[right-1]) right--;
//双指针收缩
left++;
right--;
}
}
}
return result;
}
};
四数之和
- 题目:Leetcode18
- 思路:两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况。
- 时间复杂度: O(n^3)
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for(int k = 0; k < nums.size(); k++) {
//一级剪枝
if(nums[k] > target && nums[k] >= 0 ) {
break;
}
//一级去重
if(k > 0 && nums[k] == nums[k - 1]) {
continue;
}
for(int i = k + 1; i < nums.size(); i++) {
//二级剪枝
if(nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
break;
}
//二级去重
if(i > k + 1 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while(left < right) {
if((long) nums[k] + nums[i] + nums[left] + nums[right] > target) right--;
else if((long) nums[k] + nums[i] + nums[left] + nums[right] < target) left++;
else {
result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
// 对nums[left]和nums[right]去重
while(left < right && nums[left] == nums[left + 1]) left++;
while(left < right && nums[right] == nums[right - 1]) right--;
// 找到答案时,双指针同时收缩
left++;
right--;
}
}
}
}
return result;
}
};
总结
三数之和、四数之和重点在去重逻辑、剪枝处理,大概思路都理解了,但还需要捋一捋