【问题描述】
Brunhilda 十分喜欢序列, 她喜欢观察序列的性质。
现在Brunhilda 手上有n 个不同的数, 于是她尝试将这n 个数字填到长
为n 的序列A 中。在她看来当序列A 的第i 位上数字在原来n 个数中恰
好是第i 大时,i 号位置就是稳定的。并且, 当序列中恰好有m 个位置是稳定
时, 她的开心度就会加1。那么, 她想知道, 她的开心度最大可能是多少。由于
Brunhilda 的开心度可能会很大,所以你只要输出开心度除以1000000007 的
余数。
【输入格式】
从文件problem:in 中读入数据。
输入文件第一行包括一个整数T, 表示数据组数。
接下来T 行, 每行两个整数, 表示N 和M。
【输出格式】
输出到文件problem:out 中。
输出文件包括T 行, 每行一个整数, 表示Brunhilda 最大的开心度。
【样例输入】
5
1 0
2 1
5 2
100 50
10000 5000
【样例输出】
0
0
20
578028887
60695423
【提示】
xp1 1 mod p, 其中p 为质数,x 2 [1; p)。
【子任务】
对于100% 的数据满足1 N 106; 0 M N 106。
1.对于m=0,也就是所有数放置的位置都与原位置不同,错排
错排递推公式:D(n)=(D(n-1)+D(n-2))*(n-1)
2.对于m>0呢?那么从n个数中选m个数放在原位置上,剩下n-m个数错排
ans= C(n,m)*D(n-m)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1000000007;
ll t,n,m,d[1000005],f[1000005],ans;
ll ksm(ll a,ll b){
ll res=1;
while(b){
if(b&1)res=res*a%mod;
a=a*a%mod;
b>>=1;
}
return res%mod;
}
ll k(ll n,ll m){
if(n<m)return 0;
if(n==m)return 1;
else return (d[n-m]*f[n]%mod*ksm(f[m],mod-2)%mod*ksm(f[n-m],mod-2)%mod)%mod;
}
int main(){
scanf("%lld",&t);
d[1]=0;d[2]=1;
for(int i=3;i<=1000000;i++){
d[i]=(i-1)*(d[i-1]+d[i-2])%mod;
}
f[0]=1;
for(int i=1;i<=1000000;i++){
f[i]=f[i-1]*i%mod;
}
while(t--){
scanf("%lld",&n);scanf("%lld",&m);
ans=k(n,m);
printf("%lld\n",ans);
}
return 0;
}