python之pandas库——实现向Excel表中写入数据,超简单,一学就会!!!

前言

在 Python 中,使用 Pandas 库将数据保存至 Excel 表格中是一个相对简单的过程。Pandas 提供了一个名为 to_excel 的方法,可以方便地将 DataFrame 对象导出到 Excel 文件中,相比其它处理Excel表格的库,Pandas库在处理大量数据的时候更有优势。

1、安装Pandas库

命令:pip install pandas

2、创建或获取DataFrame对象

DataFrame 是 Pandas 中用于存储和操作结构化数据的主要数据结构。你可以通过读取文件(如 CSV、Excel 等)来创建 DataFrame,也可以通过手动创建。由于本篇文章我只介绍pandas库写入数据的方法,读取数据的操作不会详细说明,所以这里我们需要手动将数据组建为一个DataFrame对象;如下:

# 1、导入模块
import pandas

# 2、将需要存储的数据构建为一个字典
data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['New York', 'Los Angeles', 'Chicago']
}
'''
说明:
我们需要将存储的的数据构建为一个字典,
其中字典的键作为excel表格中的列名,
字典的值是一个列表,列表中的元素则是我们需要存储的数据,
在后续通过pandas库将所需数据依次存入对应的列名下
'''
# 3、将字典转换为一个DataFrame对象
df = pandas.DataFrame(data)

3、使用 to_excel 方法存储数据

DataFrame 对象的 to_excel 方法可以将数据保存到 Excel 文件中。你需要指定文件路径和文件名作为参数。还可以选择是否包含行索引、工作表名称等。

语法格式:DataFrame对象.to_excel(excel_writer=,sheet_nam=,index=,engine=)
参数说明:

  1. excel_writer(字符串或 ExcelWriter 对象):文件路径或 ExcelWriter 对象,用于保存 Excel 文件。
  2. sheet_name(字符串,默认 ‘Sheet1’):要写入的工作表名称。
  3. index(布尔值,默认 True):是否将行索引写入 Excel 文件。如果设置为 False,则不写入行索引。
  4. engine(字符串,可选):用于写入 Excel 文件的引擎。Pandas 支持多个引擎,如:openpyxl 或 xlsxwriter,但通常不需要手动指定,因为 Pandas 会自动选择合适的引擎。

案例演示:

# 1、导入pandas库
import pandas

# 2、将需要存储的数据构建为一个字典
data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['New York', 'Los Angeles', 'Chicago']
}
# 3、将字典转换为一个DataFrame对象
df = pandas.DataFrame(data)

# 4、将 DataFrame对象 保存到 Excel 文件中
df.to_excel(excel_writer='write_data.xlsx', index=False)

# 注意:to_excel 方法会立即将 DataFrame 数据写入到指定的 Excel 文件中。确保你有写入文件的权限,并且文件路径是可访问的。
# to_excel在写入数据时,若目标excel表格不存在,则会自动创建

执行效果:
在这里插入图片描述

说明:
从上面可以看到,运行代码后,excel表格自动创建,并在代码中写入了目标数据,所有列名自动加粗。

4、注意事项

  • 如果指定的文件已经存在,to_excel 方法会覆盖该文件。如果你不想覆盖现有文件,可以在保存之前检查文件是否存在。
  • 如果你的数据量非常大,保存到 Excel 文件可能会消耗较多的时间和内存。在这种情况下,可以考虑将数据分批保存到多个 Excel 文件中,或者使用其他更适合大数据处理的文件格式(如 CSV、Parquet 等)。
  • 确保你有写入文件的权限,并且文件路径是可访问的。如果路径中包含特殊字符或空格,请确保正确处理这些字符。
问题: python pandas写入csv文件的方法有哪些? 回答: 在使用PythonPandas进行数据处理时,可以使用df.to_csv()方法将数据写入csv文件。该方法有多个参数可以进行设置,比如文件存储路径、分隔符、缺失值填充等。\[1\]例如,可以使用以下代码将DataFrame写入csv文件: ```python import pandas as pd data_list = \[\['name','age','job'\],\['Lucy',33,'doctor'\],\['Tom',34,'teacher'\],\['Anna',22,'student'\]\] df = pd.DataFrame(data_list\[1:\],columns=data_list\[0\]) df.to_csv('data.csv', index=False, sep=',') ``` 这样就会将DataFrame写入名为"data.csv"的csv文件中,使用逗号作为分隔符,并且不包含行索引。\[2\]另外,Pandas还支持自动推断压缩类型,可以直接将DataFrame写入压缩文件中,例如: ```python df.to_csv('data.csv.zip') ``` 这样就会将DataFrame写入名为"data.csv.zip"的压缩文件中。总之,Pandas提供了灵活且方便的方法来写入和处理各种类型的文件,包括Excel、CSV等。\[3\] #### 引用[.reference_title] - *1* [PythonPandas的常用技能【写入数据】](https://blog.csdn.net/weixin_42575020/article/details/128850513)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [在Python中使用pandas进行文件读取和写入方法详解](https://blog.csdn.net/m0_59485658/article/details/123818977)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盲敲代码的阿豪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值