从最大子列和问题的四种算法看时间复杂度

        最大子列和问题:给定N个整数的序列\{A_1,A_2,\cdots,A_N\},求如下函数的最大值:

\large f(i,j)=max\{0,\sum_{k=i}^{j}A_k\}.

         算法1:

int MaxSubseqSum1(int A[], int N){
	int ThisSum, MaxSum = 0;
	int i, j, k;

	for (i = 0; i < N; i++) 		// i为子列左端位置
		for (j = i; j < N; j++){	// j为子列右端位置
			ThisSum = 0; 			// ThisSum是从A[i]到A[j]的子列和
			for (k = i; k <= j; k++)
				ThisSum += A[k];
			if (ThisSum > MaxSum) 	// 若刚得到的子列和更大
				MaxSum = ThisSum; 	// 则更新结果
		}

	return MaxSum;
}

        时间复杂度为O(N³)。

        算法2:

int MaxSubseqSum2(int A[], int N){
	int ThisSum, MaxSum = 0;
	int i, j;
	
	for (i = 0; i < N; i++){	    // i为子列左端位置
		ThisSum = 0; 			    // A[i]到A[j]的子列和
		for (j = i; j < N; j++){    // j为子列右端位置
			ThisSum += A[j]; 	    // 对于相同的i,不同的j,只要在j-1次循环的基础上累加一项即可
			if (ThisSum > MaxSum)
				MaxSum = ThisSum;
		}
	}

	return MaxSum;
}

        时间复杂度为O(N²)。

        算法3:分而治之

分治算法思想图示
int Max3(int A, int B, int C){ 					//返回三个整数中的最大值
	return A > B ? A > C ? A : C : B > C ? B : C;
}
int DivideAndConquer(int List[], int left, int right) { 
	//分治法求List[left]到List[right]的最大子列和
	int MaxLeftSum, MaxRightSum;			 	//存放左右子问题的解
	int MaxLeftBorderSum, MaxRightBorderSum; 	//存放跨分界线的结果
	int LeftBorderSum, RightBorderSum;
	int center, i;

	if (left == right) { 						//递归终止条件,子列只有一个数字
		if (List[left] > 0)
            return List[left];
		else return 0;
	}
	//下面是"分"的过程
	center = (left + right) / 2;				//找到中分点
	//递归求两边子列的最大和
	MaxLeftSum = DivideAndConquer(List, left, center);
	MaxRightSum = DivideAndConquer(List, center + 1, right);
	//下面求跨分界线的最大子列和
	MaxLeftBorderSum = 0; LeftBorderSum = 0;
	for (i = center; i >= left; i--) { 			//从中线向左扫描
		LeftBorderSum += List[i];
		if (LeftBorderSum > MaxLeftBorderSum)
			MaxLeftBorderSum = LeftBorderSum;
	}											//左边扫描结束
	MaxRightBorderSum = 0; RightBorderSum = 0;
	for (i = center + 1; i <= right; i++) { 	//从中线向右扫描
		RightBorderSum += List[i];
		if (RightBorderSum > MaxRightBorderSum)
			MaxRightBorderSum = RightBorderSum;
	}											//右边扫描结束
	//下面返回治的结果
	return Max3(MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum);
}
int MaxSubseqSum3(int List[], int N){ 			//保持与前2种算法相同的函数接口
	return DivideAndConquer(List,0,N-1);
}

        时间复杂度为O(NlogN)。推导:设处理整条序列的时间复杂度为T(N),则左子问题和右子问题的复杂度均为T(N/2),跨分界线情况复杂度为O(N)。于是有:T(N)=2T(N/2)+cN=2[2T(N/2²)+cN/2]+cN=2^kO(1)+ckN=O(Nlog N),其中k满足N/2^k=1。

        算法4:在线处理

int MaxSubseqSum4(int A[], int N){
	int i;
	int ThisSum =0, MaxSum = 0;

	for (i = 0; i < N; i++) {
		ThisSum += A[i]; 		//向右累加
		if (ThisSum > MaxSum)
			MaxSum = ThisSum; 	//发现更大和则更新当前结果
		else if (ThisSum < 0) 	//如果当前子列和为负
			ThisSum = 0; 		//不可能使后面的部分和增大,抛弃
	}

	return MaxSum;
}

        时间复杂度仅为O(N)。


Tips:1. 一个for循环的时间复杂度等于循环次数乘以循环体代码的复杂度;
          2. if-else结构的复杂度取决于if的条件判断复杂度和两个分支部分的复杂度,总体复杂度取三者中最大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值