- 博客(48)
- 收藏
- 关注
原创 在 YAML 中如何将 JSON 对象作为字符串整体赋值?——兼谈 Go Template 中的 fromJson 使用
本文讲解了如何在YAML文件中正确嵌入JSON字符串而非结构化对象,主要解决日常开发中将JSON作为字符串传递的需求。文章指出常见错误(直接写YAML结构)并提供3种正确方法:单引号包裹(推荐)、双引号转义(不推荐)和折叠块标量(适合长JSON)。重点结合Go Template中的fromJson函数,说明其典型应用场景和实现方式,并给出Helm模板中的调用示例。最后总结不同场景的最佳实践,强调必须引号包裹JSON字符串以防止YAML解析器误处理。
2025-11-10 11:23:20
930
1
原创 Windows上如何免密码登录Linux
本文介绍了如何在Windows上通过SSH公钥认证实现免密码登录Linux服务器。核心步骤包括:在Windows生成RSA密钥对,将公钥上传至Linux服务器的authorized_keys文件,并设置正确的文件权限。详细说明了使用ssh-keygen和ssh-copy-id命令的自动方法,以及手动复制公钥的替代方案。文章还提供了常见问题排查方法,确保配置成功。这种方法既提高了登录效率,又比密码认证更安全。
2025-09-05 10:04:39
1153
原创 使用 InfluxDB 3 查询 Prometheus 数据:从入门到实战指南
本文介绍了如何利用InfluxDB 3查询Prometheus写入的监控数据。主要内容包括:InfluxDB 3的核心组件(IOx引擎、PostgreSQL协议支持)和常用命令;解决SQL查询中的表名大小写问题;查看数据库结构和表信息的方法;Prometheus监控数据的查询示例;常见问题排查技巧;以及完整工作流程演示。InfluxDB 3凭借其高性能和SQL兼容性,成为构建监控系统的理想选择,特别适合替代传统时序数据库。文章提供了从环境配置到数据查询的完整指南,帮助用户快速上手这套技术方案。
2025-07-06 21:25:55
1289
3
原创 【influxdb3】如何使用 SQL 对时间序列数据进行聚合查询
本文介绍了使用SQL对时间序列数据进行聚合查询的方法,重点结合InfluxDB 3的应用场景。主要内容包括:SQL聚合查询的基本结构(SELECT、FROM、WHERE、GROUP BY等子句);聚合函数(AVG、SUM等)和选择器函数(selector_first等)的使用方法;分组聚合、时间区间下采样(DATE_BIN)等典型场景的实现;WHERE与HAVING的区别;以及最佳实践建议。文章提供了详细的语法示例和函数列表,特别适合需要处理时间序列数据分析的开发人员参考。
2025-07-06 21:08:36
941
原创 InfluxDB 3 安装教程(适用于 Linux 系统)
本文详细介绍了在Linux系统上安装InfluxDB 3 Core的步骤。通过官方提供的install_influxdb3.sh脚本,用户可一键完成安装,无需Docker依赖。教程包含下载运行脚本、选择安装方式(推荐Simple Download)、设置节点ID、选择存储方案(建议文件存储)等关键步骤,并指导如何验证服务运行状态。安装完成后,InfluxDB 3 Core将监听8181端口,用户可通过API测试接口确认安装成功。文章还提供了后续配置建议和官方文档参考,帮助用户快速上手这款高性能时间序列数据库
2025-07-06 17:54:09
1958
原创 【Prometheus】Grafana、Alertmanager集成
本文介绍了如何集成Grafana、Alertmanager和持久化存储来完善监控系统。内容包括:1) Grafana安装与配置,添加Prometheus数据源;2) Alertmanager的安装与邮件告警配置,以及Prometheus告警规则设置;3) Prometheus本地持久化存储方案和启动参数配置。通过这三个组件的集成,可实现监控数据的可视化展示、告警通知和持久化存储功能,构建完整的监控体系。
2025-07-05 14:44:07
620
原创 【Prometheus】通过tar包部署单机版Prometheus 和 Pushgateway
摘要:本文详细介绍了在ECS服务器上使用tar包部署Prometheus和Pushgateway的完整流程,包括下载安装、服务启动、配置互连等关键步骤。内容涵盖环境准备、组件配置(Prometheus采集Pushgateway数据)、测试数据推送验证,以及推荐的守护进程运行方式。通过9090和9091端口分别访问Prometheus仪表盘和Pushgateway服务,最终实现监控数据的采集与展示。文中还提供了安全组配置建议和常用操作命令,适用于Linux系统的监控系统搭建场景。(149字)
2025-07-05 11:42:27
361
原创 【Prometheus 】通过 Pushgateway 上报指标数据
本文详细介绍了Prometheus Pushgateway的使用方法,包括其适用场景(短时任务、批处理作业等)、标准上报协议(HTTP POST请求格式)、客户端库推荐(Go/Python/Java等)以及最佳实践(合理设计标签、避免滥用等)。文章还提供了Python上报示例和Prometheus配置方法,并强调Pushgateway应作为Pull模式的补充而非替代。最后总结了不同场景的推荐监控方式,并附上官方文档等参考资料。
2025-07-04 22:54:38
1405
原创 【Prometheus】cAdvisor工作原理介绍
摘要:cAdvisor是Google开源的容器监控工具,通过Linux内核的cgroups、procfs和sysfs技术实时采集容器资源数据。其核心机制包括轮询cgroup文件获取CPU、内存等指标,监听内核事件捕获异常,并关联容器与进程数据。采用事件驱动架构,支持Prometheus格式数据暴露,深度集成Kubernetes。但缺乏历史存储功能,需依赖外部系统扩展。该工具轻量高效,适合容器环境的实时监控需求。(149字)
2025-06-16 10:19:52
633
原创 【Python】Python常用数据类型判断方法详解
本文系统介绍了在Python中判断数据类型的常用方法,包括type()、isinstance()、__class__属性以及自定义类型判断函数,并分析了它们的适用场景、优缺点和最佳实践。type()适用于精确类型匹配,而isinstance()则更适合处理继承和多类型校验。自定义函数提供了更高的灵活性,尤其在处理复杂类型逻辑时。文章还强调了结合类型注解提升代码健壮性的重要性,并提供了常见数据类型判断的示例。最后,建议根据具体需求灵活选择判断方法,避免直接比较字符串类型名,优化性能并增强代码可读性。
2025-05-12 23:08:07
1248
原创 【Python】Python常用控制结构详解:条件判断、遍历与循环控制
通过灵活组合这些结构,可高效处理逻辑判断、数据遍历与循环控制。具体实现时,建议根据场景选择最简洁的方式(如字典映射替代多分支。Python提供了多种控制结构来处理逻辑判断和循环操作,包括。替代方案、遍历方法以及循环控制语句。
2025-05-12 21:29:04
552
原创 【Python】Python常用数据类型详解
Python作为一门简洁高效的编程语言,其丰富的数据类型是构建程序的基础。本文将详细介绍数字、字符串、列表、元组、字典、集合这六种核心数据类型的特点及增删改查操作,并附代码示例,助你全面掌握数据操作技巧。• 增/删:无法直接操作,只能通过变量赋值或删除变量(不可变序列,由字符组成,用单引号或双引号定义。• 改:不可直接修改元素,需先删后增。可变有序序列,元素可重复,用方括号。定义,常用于存储不可修改的数据。• 删:通过切片或替换为空,如。定义,常用于去重和集合运算。• 增:拼接新字符串,如。
2025-05-12 21:19:48
487
原创 【Prometheus】深入解析 Prometheus 特殊标签 `__param_<name>`:动态抓取参数的艺术
引言在 Prometheus 的监控生态中,服务发现(Service Discovery) 和 指标抓取(Scraping) 是核心功能。然而,当面对需要传递动态参数的复杂监控场景时(例如:通过 URL 参数过滤指标、指定资源范围),传统的静态配置往往难以满足需求。此时,Prometheus 的 特殊标签 便成为了解决这类问题的关键工具。本文将深入剖析 的设计原理、应用场景和高级用法,帮助读者掌握如何通过动态参数实现灵活、高效的监控配置。1. 的核心原理1.1 什么是 ?• 是 Prometheu
2025-05-07 22:16:47
820
原创 【Prometheus】业务指标与基础指标的标签来源差异及设计解析(扩展版)
在现代云原生监控体系中,Prometheus 通过多维标签机制为指标赋予丰富的上下文信息,但业务指标与基础指标的标签来源存在本质差异。未来,随着 eBPF、服务网格等技术的普及,标签体系可能向更自动化的方向发展,但“按需关联、分层治理”的核心原则仍将延续。业务指标与基础指标的标签差异,本质上是云原生监控领域 “灵活性”与“稳定性” 的权衡结果。发现 KSM 的 Service 端点,因此其元数据标签仅包含 KSM 自身信息(如 Service 名称、端口),完全隔离业务 Pod 的标签。
2025-05-07 21:08:10
1018
原创 【Prometheus】业务指标与基础指标的标签来源差异及设计解析
不同类别的指标(如业务指标与基础指标)的标签来源存在显著差异,这种差异直接影响了监控系统的设计与性能。的设计体现了 Prometheus 监控模型的核心原则:通过清晰的指标语义和按需关联的查询机制,在灵活性与性能之间取得平衡。是 KSM 提供的关键指标,其设计目标是 显式暴露 Pod 的标签集合,而非隐式将 Pod 标签附加到所有指标。此配置仅匹配 KSM 的 Service,因此指标标签仅包含 KSM Pod 或 Node 的标签,无法自动获取业务 Pod 的标签。
2025-05-07 20:23:03
697
原创 【Prometheus】 kube-state-metrics中的指标kube_pod_labels
是监控 Kubernetes 集群中 Pod 标签的核心指标,通过合理配置 Prometheus 和 KSM,可以高效利用该指标进行动态过滤、关联分析和告警规则设计。是一个由 kube-state-metrics(KSM) 生成的指标,用于暴露每个 Pod 的标签信息。• 指标含义:记录每个 Pod 的标签(Labels),以键值对形式存储。• 原因:Kubernetes 标签的格式限制(如不能包含特殊字符)。• 原因:KSM 未正确配置或未采集 Pod 标签。• 解决:确保 Pod 标签符合。
2025-05-07 18:29:00
1099
原创 【Nginx】 使用least_conn负载均衡算法是否能将客户端的长连接分散到不同的服务器上demo
通过上述步骤,我们搭建了一个简单的环境来验证Nginx在关闭HTTP Keepalive的情况下,使用least_conn负载均衡算法能否将客户端的长连接分散到不同的服务器上。实验结果显示,Nginx确实能够根据负载情况将请求分发到不同的后端服务器,从而实现了负载均衡的效果。这个artifact包含了Nginx的配置文件,用于演示如何配置Nginx以实现负载均衡并关闭HTTP Keepalive。
2025-04-28 15:23:13
577
原创 springboot当中的类加载器
在 Spring Boot 中,类加载器(ClassLoader)扮演了非常重要的角色,尤其是在应用启动、依赖管理、热部署和模块化等方面。Spring Boot 使用了标准的 Java 类加载机制,但在此基础上进行了扩展和优化,以满足其快速开发和运行的需求。以下是对 Spring Boot 中类加载器的详细介绍:在深入 Spring Boot 的类加载器之前,先回顾一下 Java 中的标准类加载器体系:Spring Boot 构建在 Spring Framework 和嵌入式容器(如 Tomcat、Jett
2025-04-27 17:59:03
993
原创 java当中的类加载器
从 JDK 9 开始,Java 引入了模块化系统(JPMS,Java Platform Module System),并对类加载器的结构进行了调整。下面分别从 JDK 8 和 JDK 11 的角度详细介绍类加载器的结构、关系以及它们所加载的 JAR 包。,即一个类加载器在加载类时,会先委托其父类加载器尝试加载,只有在父类加载器无法加载时才会自己加载。通过以上对比可以看出,JDK 11 的类加载器在结构上更加清晰,并且适应了模块化系统的引入。文件)加载到内存中并生成对应的。Java 的类加载机制遵循。
2025-04-27 17:51:55
969
原创 理解 CGLIB 生成的字节码与原字节码之间的相同与不同
CGLIB(Code Generation Library)是一个用于动态生成字节码的库,它通过生成目标类的子类来实现动态代理。
2025-04-27 11:27:45
873
原创 java.sql的类加载器
在 JDK 11 中,java.sql包中的类(例如等)并不是由加载的,而是由加载的。这是因为从 JDK 9 开始,Java 引入了模块化系统(JPMS),核心类库被重新组织为多个模块,而java.sql模块并不属于java.base模块。
2025-04-27 11:07:29
437
原创 【Prometheus】Kubernetes 服务发现 cAdvisor 指标配置与 PromQL 编写指南
动态发现节点并采集 cAdvisor 指标,结合 PromQL 灵活分析容器资源使用情况,是 Kubernetes 监控的核心实践。关键步骤包括服务发现配置、RBAC 授权、指标路径重写,以及针对 CPU、内存、磁盘等资源的精细化查询。在 Kubernetes 中,cAdvisor 已内置在 Kubelet 中,无需单独部署。动态发现节点并采集容器监控数据,结合 PromQL 实现资源使用分析。• 证书问题:生产环境需配置完整 TLS 证书链,避免。中添加规则,例如仅监控。• 指标路径错误:确保。
2025-04-22 11:42:21
1249
原创 【Prometheus】如何在 Prometheus 中正确重命名 Kubernetes Pod 标签
通过合理利用 Prometheus 的,我们可以将 Kubernetes 中复杂的自定义标签转换为简洁明了的标识符,显著提升监控数据的可读性和可维护性。理解labelmap方向:元标签 → 普通标签,而非反向。配置顺序:先通过labelmap生成普通标签,再操作目标标签。调试为先:善用 Prometheus UI 和日志快速定位问题。正确的标签管理不仅能优化查询性能,还能为后续的告警规则、Grafana 仪表盘提供一致的数据基础。
2025-04-10 12:15:43
1090
原创 【Prometheus】kubernetes-pods Job的详细说明
Job 是 Prometheus 监控 Kubernetes 应用的核心配置,通过动态发现和标签重写,灵活抓取各类 Pod 暴露的指标。合理配置注解、权限和重标记规则,可大幅提升监控效率与数据质量。结合 Prometheus Operator 的PodMonitor或,可实现更优雅的声明式管理。
2025-04-03 15:06:26
699
原创 【Prometheus】kube-state-metrics 的详细说明
以下是关于的详细说明,包括其工作原理、部署 YAML 示例以及采集的核心指标。
2025-04-03 14:05:15
2154
原创 【prometheus】metric_relabel_configs 中 replace的作用
•您的配置:会新增pod_name标签,但保留原pod标签。•彻底重命名:需额外添加labeldrop操作删除原标签。•建议:根据下游系统(如 Grafana 仪表盘)的标签依赖关系决定是否保留原标签。
2025-04-03 11:25:26
647
翻译 【Flink Kubernetes Operator】访问 Flink 的 Web UI
Flink Kubernetes Operator默认不会改变原生Kubernetes集成暴露Flink Web UI的方式。
2025-02-26 11:12:56
226
原创 深入剖析 Java Pinpoint:分布式系统性能分析的利器
在当今分布式系统广泛应用的技术环境下,确保系统的高性能和稳定性成为了开发与运维工作的核心挑战。Java Pinpoint作为一款强大的分布式系统性能分析工具,以其独特的设计和丰富的功能,为开发者和运维人员提供了全面的性能监控与故障排查解决方案。接下来,让我们深入解读Pinpoint的源码,全方位探索其内部机制。
2025-02-24 22:46:02
1926
原创 Prometheus中PodMonitor配置示例
访问 Prometheus Web UI -> Status -> Targets,确认对应 Job 状态为。根据实际需求选择监控方式。
2025-02-24 21:25:36
1800
原创 Prometheus中ServiceMonitor 配置示例
访问 Prometheus Web UI -> Status -> Targets,确认对应 Job 状态为。根据实际应用调整端口、路径和标签即可适配到其他服务(如 Kafka、Redis 等)。
2025-02-24 21:23:04
1351
原创 Apache Flink架构深度解析:任务调度、算子数据同步与TaskSlot资源管理机制
JobManager根据用户设定的并行度将作业拆分为多个子任务(Subtask),每个子任务对应一个独立的算子实例。例如,若某算子的并行度为4,则生成4个并行实例分布在不同的Task Slot中。**反压机制(Backpressure)**通过动态调整生产者的数据发送速率,防止消费者过载。例如,TaskManager的接收缓冲区水位超过阈值时,向上游发送反压信号,逐级降速直至Source算子。作为资源单位,结合JobManager的全局调度与TaskManager的本地执行,保障了低延迟与高吞吐。
2025-02-21 17:18:55
1012
原创 earlyProxyReferences 的核心作用
代理一致性保障,这一机制在循环依赖与 AOP 代理协同场景中尤为关键。通过这种设计,Spring 在保持高扩展性的同时,确保了代理生成的高效与一致性。当 Bean A 被其他 Bean 依赖时,会通过三级缓存触发。早期版本中,循环依赖场景下可能生成两个不同的代理对象(通过。集合,用于跟踪哪些 Bean 的代理对象已在。CGLIB 与 JDK 代理可能混合出现,导致。在 Spring 最新版本(5.3.x+)中,未清理的早期代理引用可能导致无法垃圾回收。在 Bean 初始化完成后,执行。
2025-02-18 15:08:20
848
原创 使用 WatermarkStrategy 与 TumblingEventTimeWindows 结合处理乱序数据
在大数据实时流处理场景中,和是开发者面临的核心挑战。Apache Flink 通过和提供了一套强大的机制来解决这些问题。本文将深入探讨如何结合这两者处理乱序数据流,并通过代码示例演示其工作原理。
2025-02-13 17:28:19
930
原创 Java运行时如何确定类的来源JAR包?原理与实现详解
快速定位类冲突:精确找到实际加载的JAR包验证依赖版本:确保运行时使用正确的库版本调试类加载问题:分析动态代理、模块化等复杂场景传统JAR包开发环境下的类目录JDK 9+模块化系统动态生成的类掌握类的来源追踪技术,是解决依赖管理和类加载问题的关键技能。
2025-02-11 00:30:52
817
原创 Spring Boot中spring.factories文件的作用以及读取
Spring Boot 通过类在应用启动时查找并读取类路径下所有的文件,根据不同的工厂类型(键)加载对应的实现类,从而实现自动配置和扩展机制。这种机制使得 Spring Boot 能够方便地集成各种第三方库和组件。
2025-02-11 00:11:19
803
原创 Java中如何进行读取JAR包内的文件
通过以上方法,可以安全地读取JAR包内的资源文件,无需解压或依赖外部路径。开头,表示从JAR包的根目录开始查找;否则相对于当前类所在的包。适合读取文本、二进制等资源文件(如配置文件、图片等)。在Java中读取JAR包内的文件,可以通过。,说明路径错误或文件未正确打包到JAR中。
2025-02-10 23:56:13
1759
1
原创 DataGen连接器
实现,可用于为Flink管道生成输入数据。在本地开发或进行演示,且无法访问Kafka等外部系统时,该连接器非常有用。DataGen连接器是内置的,无需额外依赖项。该数据源会将序列拆分为与并行数据源子任务数量相同的并行子序列。每个子序列将按顺序生成。因此,如果并行度限制为1,将按顺序生成从。值流,其整体数据源速率(跨所有数据源子任务)不超过每秒100个事件。值的(子)序列映射为任意数据类型的生成事件。中可以找到其他速率限制策略,例如限制每个检查点发出的记录数。然而,从实际角度来看,将记录数设置为。
2025-02-08 16:20:26
489
原创 Prometheus 接收器
在实际应用中,将数据写入与Prometheus兼容的后端时的行为取决于Prometheus的实现和配置。在某些情况下,这些约束会放宽,违反远程写入规范的写入操作可能会被接受。发送到接收器的任何违反顺序的记录都会被丢弃,并且可能会导致同一写入请求中批处理的其他记录也被丢弃。由于Prometheus远程写入不支持部分失败,因此在批处理写入请求中,只要有一个记录违反任何约束,整个写入请求都会被丢弃。此接收器连接器可用于通过Prometheus的远程写入接口,将数据写入与Prometheus兼容的存储中。
2025-02-08 15:59:26
1866
原创 Shell脚本文件条件判断指南
在 Shell 脚本中,if语句常用于根据条件执行不同的操作。当涉及到文件时,if语句可以与一系列文件测试运算符结合使用,以检查文件的属性或状态。
2025-01-24 14:10:47
284
本包包含prometheus,pushgateway,alertmanager,grafana安装包
2025-07-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅