目录
行业分析
母婴消费市场前景非常广阔。根据相关报告,随着中国经济的快速发展和城市化进程的加快,中产阶级家庭数量增多,以及“两孩”政策的全面放开,未来几年内中国的新生儿数量将持续增长,预计到2030年,中国每年的出生人口仍将保持在1500万以上。这种趋势为母婴消费市场提供了巨大的商机和发展空间,尤其是在母婴用品、医疗保健、早期教育等方面。
另外,消费者变得越来越注重品质、健康、安全等方面,要求更高的产品和服务。同时,互联网技术和数字化渠道的不断发展也推动了母婴消费市场的进一步升级和转型。因此,母婴消费市场前景十分广阔,未来行业企业需要深入挖掘市场需求,创新产品和服务,加强品牌营销,才能在激烈的竞争中获得优势并实现持续稳定的发展。
用PEST分析一下中国母婴消费市场:
政治(Political)方面,近年来针对母婴市场的政策趋势较为明显。比如政府出台了“两孩”政策,促使更多家庭迎来了第二个孩子,这也直接带动了母婴消费市场的发展。同时,政府也加强了监管力度,建立了一系列法规和标准,保障了消费者的权益。
经济(Economic)方面,中国经济发展迅速,人民生活水平逐年提高,加上人口红利的作用,母婴消费市场的需求不断增长。而且随着互联网的发展,电商的兴起也为母婴市场带来了很大的便利和发展机遇。
社会(Social)方面,随着社会进步和教育水平提高,人们越来越注重宝宝的健康成长。同时,女性在家庭中的地位提高,她们也更愿意为宝宝花费更多的金钱和时间。
技术(Technological)方面,随着科技的发展,母婴产品的种类和质量越来越丰富和高端,同时,移动互联网也方便了消费者查找产品信息、对比价格和进行在线购物。
综合来看,中国母婴消费市场的前景光明。同时,政府和监管部门的支持和监管力度不断加强,能够为市场的健康发展提供有力保障。
不管是新手妈咪还是老司机爸爸,都想给宝宝提供最好的东西,而且现在随着科技的发展,人们也更加便捷地购买自己需要的商品,因此线上销售母婴产品将是个非常有前景的行业。
进入数据分析专列
1. 明确数据,提出问题
母婴产品的销售额就像是宝妈在商场中呼吁:“快看快看,这里有一大堆好东西!”
市场份额就像是宝宝在玩具堆里争夺玩具:“我的!不许抢!”
客户满意度就像是宝爸在家里端上一桌子美食,宝妈评价:“好吃极了!”
品牌知名度就像是宝宝在奶嘴、尿不湿等基础物品中选出自己最喜欢的牌子:“这个我用过,特别好!”
渗透率就像是宝宝在与小伙伴玩耍时,他们都使用着同样的玩具:“我们班几乎每个宝宝都用这种尿不湿!”
复购率就像是宝妈在商场中看到心仪的产品又回头再买:“哎呀,这个也太好了吧,再来一个!”

下面这张表用来放婴儿用户信息的,包括生日、性别和用户ID信息

1.1提出问题(从表中可以得到):
- 婴儿信息表中,年龄分布如何?
- 最畅销的商品是什么?
- 销量走势如何
- 有哪些用户是买最多的
需要领导给出的条件:
- 业内销量多少算合格
- 商品的金额是多少
- 这是其中一个部门的数据吗,其他部门销量是不是也差不多
2. 理解数据
表1:母婴产品交易表字段
- user_id:用户id(唯一值)
- auction_id:订单编号
- cat_id:商品种类ID
- cat1:商品属于哪个类别
- property:商品属性
- buy_mount:购买数量
- day:购买时间
表2:婴儿用户表字段
- user_id :用户id
- birthday :出生日期
- gender: 性别(0 男性;1 女性)
为方便观察我把表1的列名改成了中文,其中用户身份信息有唯一值,购买时间需要改成日期格式。
订单编号、商品种类序列号商品序列号需要改成文本格式。再用vlookup函数调用表二的生日数据计算年龄。
3. 数据清洗
具体的数据清洗,前面的文章中已经提到过了,这里就不多说了。
1.删除重复项
用户身份信息有唯一值所以用了数据-删除重复项去删除。
2. 把需要用文本格式显示的字段一致化处理
除了购买数量仍然是数字格式,日期需改成日期格式以外其余均改成文本格式,使用分列即可完成。
3. 合并2个表的信息
使用vlookup函数查找第二个表的年龄和性别字段和表1的用户ID匹配,即可查看婴儿的年龄。
当数据清洗完毕,我们就可以开始创建模型了。
4. 建立模型
购买产品婴儿年龄分布(32岁的也许是家长购买用于其他用途)
由此看来3岁左右的婴儿购买力最大,因此我认为可以多增大3岁左右商品的宣传力度或者给与相关优惠活动等。
我们还能分析出最畅销的商品是什么?
从下图可以看出:编号50008168的产品卖的最好,但由于金额和产品说明未知不知道是不是一些刚需的日用品,需要进一步再确认。

好了,今天的分享就到这里了,有什么问题可以给我留言,看到肯定会回复,请不要吝啬您的三连,谢谢!