【现代密码学】笔记3.4-3.7--构造安全加密方案、CPA安全、CCA安全 《introduction to modern cryphtography》

【现代密码学】笔记3.4-3.7–构造安全加密方案、CPA安全、CCA安全 《introduction to modern

cryphtography》

  • 写在最前面

  • 私钥加密与伪随机性 第二部分

  • * 流加密与CPA
    
    •       * 多重加密
      
    • CPA安全加密方案

    •       * CPA安全实验、预言机访问(oracle access)
      
    • 操作模式

    •       * 伪随机函数PRF
      
      • 伪随机排列PRP
    • CCA安全加密方案

    •       * 补充
      
      • 填充预言机Padding-Oracle攻击真实案例

写在最前面

主要在 哈工大密码学课程 张宇老师课件 的基础上学习记录笔记。

内容补充:骆婷老师的PPT
《introduction to modern cryphtography》–Jonathan Katz, Yehuda
Lindell(现代密码学——原理与协议)中相关章节
密码学复习笔记 这个博主好有意思

初步笔记,如有错误请指正

快速补充一些密码相关的背景知识


![请添加图片描述](https://img-
blog.csdnimg.cn/direct/8d888f7ea08e469cac997cce7c00e801.png)

私钥加密与伪随机性 第二部分

  1. 本节课学习另外两种私钥加密安全理论:选择明文攻击(CPA)下不可区分性、选择密文攻击(CCA)下不可区分性以及相关的密码学原语、假设、构造和证明。这些攻击更好的刻画了现实世界中敌手的能力,相应的密码学方案也是目前真正在实际使用的。

  2. 目录:流加密与CPA,CPA安全加密方案,操作模式,CCA安全加密方案

流加密与CPA
  1. 流加密方案(Stream Cipher)
* 首先介绍当有多个消息需要被传递时,如何利用之前学习的基于PRG的加密方案来保护消息。
* 思路:受一次一密方案的启发,通过将变长消息与密钥的异或来加密
* 流加密方案:通过将多个消息“拼成”一个消息,与伪随机的比特流(密钥流)异或来加密
* 密钥流:由一个变长的伪随机生成器产生
* 优点:逻辑简单,比分组密码更快
* 缺点:难以做到安全
  1. 采用流加密方案的安全多重加密
* 同步模式:用一个流中不同部分分别加密各个消息;
* 异步模式:以密钥和初始向量一起作为输入来产生流,每个明文的加密采用相同的密钥和不同的初始向量 
  * **初始向量(Initial Vector)** , I V IV IV是随机选取的并且是公开的;其生成是随机的并不受控制,但生成后并不保密;密钥的生成是随机的并不受控制,但生成后也要保密。
* 两种模式差异: 
  * 同步模式适合持续通信场景,例如语音;异步模式适合间断通信场景,例如即时消息。
  1. 流密码的安全性
1. 现状:没有标准化和流行的方案,安全性仍有疑问,例如在802.11中WEP协议的RC4,线性反馈移位寄存器(Linear Feedback Shift Registers);
2. 警告:不要使用任何流加密方案,如果一定需要的话,采用由分组加密方案构造的。
3. eStream项目致力于设计安全的流密码
  1. 相关密钥:真实世界例子
* 用于多重加密的密钥(初始向量和密钥对)必须是独立的。否则,前面的攻击就会生效;
* 对于802.11b WEP的若干攻击: 
  * WEP为异步模式, E n c ( m i ) : = < I V i , G ( I V i ∥ k ) ⊕ m i > \mathsf{Enc}(m_i) := \left< IV_i, G(IV_i\|k) \oplus m_i\right> Enc(mi​):=⟨IVi​,G(IVi​∥k)⊕mi​⟩
  * I V IV IV长度为24比特,在 2 24 ≈ 2^{24} \approx 224≈ 16M 帧后 I V IV IV会产生重复;
  * 在一些WiFi网卡上,在电源重启后 I V IV IV重置为0;
  * I V i = I V i − 1 \+ 1 IV_i = IV_{i-1} + 1 IVi​=IVi−1​+1. 对于RC4,在40,000帧后可以恢复  k k k ;
多重加密
  1. 多重加密(Multiple Encryptions)
* 在一次一密中,一个密钥不可以用于对多个消息的加密;否则,就是不安全的。如果敌手能够获得用同一个密钥加密后的多个密文,则之前的方案都是不安全的;为此,我们需要新的加密方案来防御这样的攻击。
* 多个明文的加密实验 P r i v K A , Π m u l t ( n ) \mathsf{PrivK}^{\mathsf{mult}}_{\mathcal{A},\Pi}(n) PrivKA,Πmult​(n),当一次加密多个明文时,窃听者敌手能够区分出两组明文吗?
* 一个敌手 A \mathcal{A} A与一个挑战者 C \mathcal{C} C进行3轮交互: 
  1. A \mathcal{A} A选择两个长度相同、内容不同明文向量 M ⃗ 0 = ( m 0 1 , … , m 0 t ) \vec{M}_0=(m_0^1,\dots,m_0^t) M 0​=(m01​,…,m0t​),  M ⃗ 1 = ( m 1 1 , … , m 1 t ) \vec{M}_1=(m_1^1,\dots,m_1^t) M 1​=(m11​,…,m1t​),其中两个向量中同一位置的明文长度相同 ∀ i , ∣ m 0 i ∣ = ∣ m 1 i ∣ \forall i, |m_0^i| = |m_1^i| ∀i,∣m0i​∣=∣m1i​∣,发送给 C \mathcal{C} C;
  2. C \mathcal{C} C根据密钥生成算法生成一个新密钥 k ← G e n ( 1 n ) k \gets \mathsf{Gen}(1^n) k←Gen(1n),一个随机比特 b ← { 0 , 1 } b \gets \\{0,1\\} b←{0,1}。对向量 M ⃗ b \vec{M}_b M b​中每个明文加密  c i ← E n c k ( m b i ) c^i \gets \mathsf{Enc}_k(m_b^i) ci←Enck​(mbi​) 得到一个密文向量  C ⃗ = ( c 1 , … , c t ) \vec{C}=(c^1,\dots,c^t) C =(c1,…,ct) ,并发送给 A \mathcal{A} A;
  3. A \mathcal{A} A输出对所加密明文向量的猜测 b ′ b' b′,若 b = b ′ b=b' b=b′,则 A \mathcal{A} A成功;否则,失败;
* 这与之前的单个消息不可区分实验类似的,区别在于 **用同一个密钥加密的多个消息** 。敌手可以获得多个明文的密文,比单个明文不可区分实验中的敌手有更强的能力。
  1. 多重加密安全定义
* Π \Pi Π 是 **窃听者出现时不可区分的多重加密方案** ,如果任意PPT的敌手 A \mathcal{A} A, 存在可忽略的函数 n e g l \mathsf{negl} negl 使得

Pr ⁡ [ P r i v K A , Π m u l t ( n ) = 1 ] ≤ 1 2 + n e g l ( n ) .
\Pr\left[\mathsf{PrivK}^{\mathsf{mult}}_{\mathcal{A},\Pi}(n)=1\right] \le
\frac{1}{2} + \mathsf{negl}(n). Pr[PrivKA,Πmult​(n)=1]≤21​+negl(n).

* 根据这个定义,来分析迄今学习的密码学方案是否是多重加密不可区分的?
  1. 攻击确定性加密方案
* 问题:如果一个加密方案中加密算法是确定性的,即同一个明文会被同一个密钥加密成同一个密文,那么该加密方案是`多重加密安全`的吗?
* 攻击:对于确定性加密方案,敌手可以构造 m 0 1 = m 0 2 m_0^1 = m_0^2 m01​=m02​ 并且  m 1 1 ≠ m 1 2 m_1^1 \neq m_1^2 m11​=m12​,然后当 c 1 = c 2 c^1 = c^2 c1=c2,输出  b ′ = 0 b'=0 b′=0,否则  b ′ = 1 b'=1 b′=1。
* 因此,确定性加密方案不是多重加密安全的,我们需要新的密码学原语来防御多重加密攻击。接下来,我们介绍一种更强的攻击,其涵盖了多重加密攻击。只要防御了这个新定义的攻击,也就同时防御了多重加密攻击。
CPA安全加密方案
  1. 选择明文攻击( Chosen-Plaintext Attacks (CPA) )(思考)
* 敌手具有获得其所选择明文对应的密文的能力。

* 第二次世界大战中的例子:美国海军密码分析学家相信密文“AF”表示日语中的“中途岛”;但美国将军不认为中途岛会遭到攻击(?这里没看懂);美国海军密码分析学家发送了一个明文,中途岛淡水供给不足;日本军队截获的明文,并发送了一段密文,“AF”淡水不足;美国军队派出三艘航空母舰并且取胜。

* 这里例子里,美国海军密码分析学家选择了明文并得到了密文。
CPA安全实验、预言机访问(oracle access)
  1. CPA安全实验
* CPA不可区分实验  P r i v K A , Π c p a ( n ) \mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) PrivKA,Πcpa​(n): 
  1. 挑战者生成密钥  k ← G e n ( 1 n ) k \gets \mathsf{Gen}(1^n) k←Gen(1n);(这里与窃听者不可区分实验相比,密钥的生成提前了,这是为了下一步提供加密预言机)
  2. A \mathcal{A} A 被给予输入  1 n 1^n 1n 和对加密函数  E n c k ( ⋅ ) \mathsf{Enc}_k(\cdot) Enck​(⋅)的 **预言机访问(oracle access)** A E n c k ( ⋅ ) \mathcal{A}^{\mathsf{Enc}_k(\cdot)} AEnck​(⋅) ,输出相同长度  m 0 , m 1 m_0, m_1 m0​,m1​ ;
  3. 挑战者生成随机比特  b ← { 0 , 1 } b \gets \\{0,1\\} b←{0,1},将挑战密文  c ← E n c k ( m b ) c \gets \mathsf{Enc}_k(m_b) c←Enck​(mb​) 发送给  A \mathcal{A} A;
  4. A \mathcal{A} A 继续对  E n c k ( ⋅ ) \mathsf{Enc}_k(\cdot) Enck​(⋅)的预言机的访问,输出 b ′ b' b′;如果 b ′ = b b' = b b′=b,则 A \mathcal{A} A成功 P r i v K A , Π c p a = 1 \mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}=1 PrivKA,Πcpa​=1,否则 0。
* 敌手对加密函数预言机访问是指,敌手以任意明文作为输入,可以从预言机得到对应密文。此处,密钥是已经提前生成的,因此才能通过加密函数预研机得到密文,但仍对敌手保密。`预言机`是一个形象的比喻,它是一个黑盒,只接收输入并返回输出;访问者不需要了解其内部构造。
* 该实验与窃听者不可区分实验的区别在于,敌手可访问加密预言机,在实验过程中始终可以,包括在产生两个明文阶段,以及在收到挑战密文后猜测被加密明文阶段,获得任意明文被同一密钥加密的密文;而且密文是逐个获得,可以根据之前的明文和密文对来“适应性地”构造新的查询。
* CPA敌手比多重加密的敌手更“强大”,因为多重加密敌手是可以一次性地获得一组密文,而CPA敌手可以根据已经获得的明文和密文“多次适应性地”再次获得密文。
  1. CPA安全
* Π \Pi Π 是CPA不可区分加密方案 (CPA安全的),如果任意概率多项式时间算法 A \mathcal{A} A,存在可忽略的函数 n e g l \mathsf{negl} negl使得,

Pr ⁡ [ P r i v K A , Π c p a ( n ) = 1 ] ≤ 1 2 + n e g l ( n )
\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)=1\right] \le
\frac{1}{2} + \mathsf{negl}(n) Pr[PrivKA,Πcpa​(n)=1]≤21​+negl(n)

* 定理:CPA安全也是多重加密安全的。证明略。直觉上,CPA敌手比多重加密敌手更强大。

* 之前的方案也难以实现CPA安全;

* 多重加密安全意味着CPA安全?(作业)显然是否定的。那么,思考两种安全定义的区别成为解题的关键。
操作模式
伪随机函数PRF
  1. 伪随机函数( Pseudorandom Function )概念
* 为了实现CPA安全,之前的PRG提供的随机性不够用了,需要新的数学工具为加密提供额外的随机性。为此引入伪随机函数(PRF),是对伪PRG的泛化:PRG从一个种子生成一个随机串,PRF从一个key生成一个函数;
* 带密钥的函数 **Keyed function** F : { 0 , 1 } ∗ × { 0 , 1 } ∗ → { 0 , 1 } ∗ F : \\{0,1\\}^* \times \\{0,1\\}^* \to \\{0,1\\}^* F:{0,1}∗×{0,1}∗→{0,1}∗
  * F k : { 0 , 1 } ∗ → { 0 , 1 } ∗ F_k : \\{0,1\\}^* \to \\{0,1\\}^* Fk​:{0,1}∗→{0,1}∗,  F k ( x ) = def F ( k , x ) F_k(x) \overset{\text{def}}{=} F(k,x) Fk​(x)=defF(k,x)
  * 两个输入到一个输出,看上去像,但不是加密函数;输入key,得到一个一输入到一输出的函数;
* 查表 **Look-up table** f f f:  { 0 , 1 } n → { 0 , 1 } n \\{0,1\\}^n \to \\{0,1\\}^n {0,1}n→{0,1}n 需要多少比特信息存储? 
  * 查表是一个直接描述输入与输出间映射的表格,一个条目对应一个输入与一个输出;当该映射是随机产生的,是一个真随机函数;
* 函数族 **Function family** F u n c n \mathsf{Func}_n Funcn​: 包含所有函数  { 0 , 1 } n → { 0 , 1 } n \\{0,1\\}^n \to \\{0,1\\}^n {0,1}n→{0,1}n.  ∣ F u n c n ∣ = 2 n ⋅ 2 n |\mathsf{Func}_n| = 2^{n\cdot2^n} ∣Funcn​∣=2n⋅2n
  * 一个PRF是函数族中一个子集,key确定下的PRF是函数族中一个元素,一个查表是函数族中一个元素;
* 长度保留 **Length Preserving** :  ℓ k e y ( n ) = ℓ i n ( n ) = ℓ o u t ( n ) = n \ell_{key}(n) = \ell_{in}(n) = \ell_{out}(n) = n ℓkey​(n)=ℓin​(n)=ℓout​(n)=n;密钥长度与函数输入、输出长度相同为 n n n;没有特殊说明时,只讨论长度保留的函数;
  1. 伪随机函数定义
* 直觉上,一个PRF生成的带密钥的函数与从函数族中随机选择的真随机函数(查表)之间是不可区分的;然而,一个真随机函数具有指数长度,无法“预先生成”,只能“on-the-fly”(边运行、边生成)的使用,引入一个对函数 O \mathcal{O} O的确定性的预言机访问(oracle access) D O D^\mathcal{O} DO。
* 这里的预言机是一个抽象的函数。访问预言机,就是给出任意输入,得到该函数的输出。访问预言机的能力不包括了解正在访问的预言机具体内部构造。
* 一个带密钥的函数是一个伪随机函数(PRF),对任意PPT区分器 D D D, ∣ Pr ⁡ [ D F k ( ⋅ ) ( 1 n ) = 1 ] − Pr ⁡ [ D f ( ⋅ ) ( 1 n ) = 1 ] ∣ ≤ n e g l ( n ) \left|\Pr[D^{F_k(\cdot)}(1^n)=1] - \Pr[D^{f(\cdot)}(1^n)=1]\right| \le \mathsf{negl}(n)  ​Pr[DFk​(⋅)(1n)=1]−Pr[Df(⋅)(1n)=1] ​≤negl(n),其中 f f f是 F u n c n \mathsf{Func}_n Funcn​中随机函数。 
  * 这里区分器 D D D是一个算法,可以访问预言机,但并不知道预言机背后是什么。
  * 这里不可区分性关键是,对真随机查表和伪随机函数,区分器输出相同结果概率的差异。区分器输出1或0本身没有,也无需,有特定语义。
* PRF和PRG的关系在后面会学习,可以由PRG来构造PRF。
  1. PRF例题
* 问题一个固定长度的一次一密方案是一个PRF吗?
* 对于一个PRF,在密钥保密和没有预言机访问时,给指定输入,能以不可忽略的概率猜测输出相关信息吗?
* 如果是PRF,则给出该函数与查表的相似性;否则,给出一个区分器可以区分出该函数不是随机的。
  1. 以PRF实现CPA安全
* 新随机串  r r r,每次新生成一个随机串;
* F k ( r ) F_k(r) Fk​(r):  ∣ k ∣ = ∣ m ∣ = ∣ r ∣ = n |k| = |m| = |r| = n ∣k∣=∣m∣=∣r∣=n. 长度保留;
* G e n \mathsf{Gen} Gen:  k ∈ { 0 , 1 } n k \in \\{0,1\\}^n k∈{0,1}n.
* E n c \mathsf{Enc} Enc:  s : = F k ( r ) ⊕ m s := F_k(r)\oplus m s:=Fk​(r)⊕m,  c : = < r , s > c := \left<r, s\right> c:=⟨r,s⟩. 密文包括两部分新随机串,以及异或输出;
* D e c \mathsf{Dec} Dec:  m : = F k ( r ) ⊕ s m := F_k(r)\oplus s m:=Fk​(r)⊕s.
* 定理:上述方案是CPA安全的。
  1. 从PRF到CPA安全的证明
* 思路:从PRF的区分器算法 D \mathcal{D} D规约到加密方案敌手算法 A \mathcal{A} A,区分器 D \mathcal{D} D作为敌手 A \mathcal{A} A的挑战者,敌手 A \mathcal{A} A实验成功时区分器 D \mathcal{D} D输出1。分两种情况,当输入真随机函数 f f f时,相当于一次一密;当输入伪随机函数 F k F_k Fk​时,为加密方案。
* 规约: D \mathcal{D} D输入预言机,输出一个比特; A \mathcal{A} A的加密预言机访问通过 D \mathcal{D} D的预言机 O \mathcal{O} O来提供, c : = < r , O ( r ) ⊕ m > c := \left<r, \mathcal{O}(r) \oplus m \right> c:=⟨r,O(r)⊕m⟩; D \mathcal{D} D输出1,当 A \mathcal{A} A在实验中成功。 
  * 这里有两个预言机: D \mathcal{D} D访问的预言机 O \mathcal{O} O, A \mathcal{A} A访问的加密预言机 E n c k \mathsf{Enc}_k Enck​,后者不能直接访问前者的预言机。
  1. 从PRF到CPA安全的证明(续)
* 考虑真随机函数 f f f的情况,分析不可区分实验成功概率 Pr ⁡ [ P r i v K A , Π ~ c p a ( n ) = 1 ] = Pr ⁡ [ B r e a k ] \Pr[\mathsf{PrivK}_{\mathcal{A},\tilde{\Pi}}^{\mathsf{cpa}}(n) = 1] = \Pr[\mathsf{Break}] Pr[PrivKA,Π~cpa​(n)=1]=Pr[Break]。敌手 A \mathcal{A} A访问加密预言机可以获得多项式 q ( n ) q(n) q(n)个明文与密文对的查询结果并得到随机串和pad { < r i , f ( r i ) > } \\{ \left< r_i, f(r_i) \right> \\} {⟨ri​,f(ri​)⟩};当收到挑战密文 c = < r c , s : = f ( r c ) ⊕ m b > c=\left<r_c, s:=f(r_c)\oplus m_b\right> c=⟨rc​,s:=f(rc​)⊕mb​⟩时,根据之前查询结果中随机串是否与挑战密文中随机串相同,分为两种情况:

  * 当有相同随机串时,根据 r r r可以得到 f ( r c ) f(r_c) f(rc​), m b = f ( r c ) ⊕ s m_b=f(r_c)\oplus s mb​=f(rc​)⊕s,但这种情况发生的概率 q ( n ) / 2 n q(n)/2^n q(n)/2n是可忽略的;
  * 当没有相同随机串时,输出是随机串,相当于一次一密,成功概率=1/2;
* Pr ⁡ [ D F k ( ⋅ ) ( 1 n ) = 1 ] = Pr ⁡ [ P r i v K A , Π c p a ( n ) = 1 ] = 1 2 \+ ε ( n ) . \Pr[D^{F_k(\cdot)}(1^n)=1] = \Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{cpa}}(n) = 1] = \frac{1}{2} + \varepsilon(n). Pr[DFk​(⋅)(1n)=1]=Pr[PrivKA,Πcpa​(n)=1]=21​+ε(n).

* Pr ⁡ [ D f ( ⋅ ) ( 1 n ) = 1 ] = Pr ⁡ [ P r i v K A , Π ~ c p a ( n ) = 1 ] = Pr ⁡ [ B r e a k ] ≤ 1 2 \+ q ( n ) 2 n . \Pr[D^{f(\cdot)}(1^n)=1] = \Pr[\mathsf{PrivK}_{\mathcal{A},\tilde{\Pi}}^{\mathsf{cpa}}(n) = 1] = \Pr[\mathsf{Break}] \le \frac{1}{2} + \frac{q(n)}{2^n}. Pr[Df(⋅)(1n)=1]=Pr[PrivKA,Π~cpa​(n)=1]=Pr[Break]≤21​+2nq(n)​.

* Pr ⁡ [ D F k ( ⋅ ) ( 1 n ) = 1 ] − Pr ⁡ [ D f ( ⋅ ) ( 1 n ) = 1 ] ≥ ε ( n ) − q ( n ) 2 n . \Pr[D^{F_k(\cdot)}(1^n)=1] - \Pr[D^{f(\cdot)}(1^n)=1] \ge \varepsilon(n) - \frac{q(n)}{2^n}. Pr[DFk​(⋅)(1n)=1]−Pr[Df(⋅)(1n)=1]≥ε(n)−2nq(n)​. 根据伪随机函数定义, ε ( n ) \varepsilon(n) ε(n) 是可忽略的.

* 小结:通过规约将 A \mathcal{A} A的不可区分实验成功的概率与 D D D的区分器实验输出1的概率建立等式;分析输入真随机函数预言机时 D D D输出1的概率(即不可区分实验成功概率)是1/2+一个可忽略函数;根据PRF的定义,输入伪随机函数预言机时 D D D输出1的概率(1/2+ ε ( n ) \varepsilon(n) ε(n))与输入真随机函数预言机时 D D D输出1的概率(1/2)的差异时可忽略的。
  1. CPA安全例题
* E n c k ( m ) = P R G ( k ∥ r ) ⊕ m \mathsf{Enc}_k(m) = PRG(k\|r) \oplus m Enck​(m)=PRG(k∥r)⊕m,  r r r 是新的随机串。这是CPA安全的吗?
* 从PRF到CPA安全:变长消息
* 对于任意长度消息  m = m 1 , … , m ℓ m = m_1, \dots , m_{\ell} m=m1​,…,mℓ​, c : = < r 1 , F k ( r 1 ) ⊕ m 1 , r 2 , F k ( r 2 ) ⊕ m 2 , … , r ℓ , F k ( r ℓ ) ⊕ m ℓ > c := \left< r_1, F_k(r_1) \oplus m_1, r_2, F_k(r_2) \oplus m_2, \dots, r_\ell, F_k(r_\ell) \oplus m_\ell\right> c:=⟨r1​,Fk​(r1​)⊕m1​,r2​,Fk​(r2​)⊕m2​,…,rℓ​,Fk​(rℓ​)⊕mℓ​⟩
* 推论:如果 F F F是一个 PRF,那么  Π \Pi Π 对任意长度消息是 CPA 安全的。
* 问题:这个方案有什么缺点?
* 有效性:  ∣ c ∣ = 2 ∣ m ∣ |c| = 2|m| ∣c∣=2∣m∣. 密文长度是明文长度的二倍,并且需要大量的真随机串。
伪随机排列PRP
  1. 伪随机排列( Pseudorandom Permutations
* 为了提高对任意长度消息加密的效率,以及更高级的加密基础工具,学习伪随机排列PRP的概念;

* 双射 **Bijection** :  F F F 是一到一的(一个输入对应一个唯一输出)且满射(覆盖输出集中每个元素);

* 排列 **Permutation** : 一个从一个集合到自身的双射函数;

* 带密钥的排列 **Keyed permutation** :  ∀ k , F k ( ⋅ ) \forall k, F_k(\cdot) ∀k,Fk​(⋅)是排列;类似带密钥的函数;

* F F F 是一个双射  ⟺ F − 1 \iff F^{-1} ⟺F−1 是一个双射;函数和逆函数都是双射;

* 定义:一个有效的带密钥的排列  F F F 是PRP,如果对于任意PPT的区分器 D D D,

∣ Pr ⁡ [ D F k ( ⋅ ) , F k − 1 ( ⋅ ) ( 1 n ) = 1 ] − Pr ⁡ [ D f ( ⋅ ) , f − 1
( ⋅ ) ( 1 n ) = 1 ] ∣ ≤ n e g l ( n )
\left|\Pr[D{F_k(\cdot),F_k{-1}(\cdot)}(1^n)=1] -
\Pr[D{f(\cdot),f{-1}(\cdot)}(1^n)=1]\right| \le \mathsf{negl}(n)
​Pr[DFk​(⋅),Fk−1​(⋅)(1n)=1]−Pr[Df(⋅),f−1(⋅)(1n)=1] ​≤negl(n)

* 问题:一个PRP也是一个PRF吗?
  1. PRP例题
* 对1比特的PRP、PRF的分析;
* 交换引理:如果  F F F 是一个 PRP 并且  ℓ i n ( n ) ≥ n \ell_{in} (n) \ge n ℓin​(n)≥n,那么  F F F 也是一个 PRF。 
  * 一个随机排列和一个查表是不可取分的,PRP和随机排列不可取分,因此,PRP和查表是不可取分的。
  1. 操作模式概念( Modes of Operation
* 操作模式是使用PRP或PRF来加密任意长度消息的方法;
* 操作模式是从PRP或PRF来构造一个PRG的方法;
* 将一个消息分成若干等长的块(分组,block),每个块以相似方式处理;
  1. Electronic Code Book (ECB) 模式
* 在窃听者出现时,是否是不可区分的?
* F F F 可以是任意PRF吗?
  1. 对ECB的攻击
* 为什么仍然可以识别企鹅?
  1. Cipher Block Chaining (CBC) 模式
* I V IV IV初始向量,一个新的随机串;
* 是CPA的吗?可并行化吗?F可以是任意PRF吗?
  1. Output Feedback (OFB) Mode 模式
* 是CPA安全吗?可并行化吗?F可以是任意PRF吗?
  1. Counter (CTR) Mode 模式
* c t r ctr ctr是一个初始向量,并且逐一增加;
* 是CPA安全吗?可并行化吗?F可以是任意PRF吗?
  1. CTR模式是CPA安全
    ![在这里插入图片描述](https://img-
    blog.csdnimg.cn/direct/57b0db18ae3e4ddda0c32c49a5c00a8a.png)
* 定理:如果 F F F是一个PRF,那么随机CTR模式是CPA安全的。

* 证明:其安全性与之前基于PRF的CPA安全证明类似,从PRF的伪随机假设规约到CPA安全加密方案。其中,对 c t r ctr ctr的安全性直觉在于, c t r ctr ctr也是在加密前不可预测的,且每个块所用 c t r ctr ctr都是不同的;

* 当加密预言机是由真随机查表构成时,敌手多次访问加密预言机得到的 c t r ctr ctr序列与挑战密文的 c t r ctr ctr序列之间有重叠的概率 2 q ( n ) 2 2 n \frac{2q(n)^2}{2^n} 2n2q(n)2​是可以忽略的;若没有重叠,则相当于一次一密;

* 规约与之前证明基于PRF的CPA安全加密方案一样,证明过程也类似。
  1. 初始向量不应该可预测
* 如果 I V IV IV是可预测的,那么CBC/OFB/CTR模式不是CPA安全的。
* 为什么?(作业)
* 在SSL/TLS 1.0中的漏洞:记录 # i \\#i #i的 I V IV IV是上一个记录 # ( i − 1 ) \\#(i-1) #(i−1)的密文块。
* OpenSSL中API:需要用户输入 I V IV IV,但 I V IV IV应在函数内实现。当 I V IV IV不充分随机时不安全。
  1. 非确定性加密
* 有三种通用的实现CPA安全的非确定性加密方法:
* 随机化的: r r r随机生成,如构造5;需要更多熵,长密文
* 有状态的: r r r为计数器,如CTR模式;需要通信双方同步计数器
* 基于Nonce的: r r r只用一次;需要保证只用一次,长密文
CCA安全加密方案
  1. 选择密文攻击 Chosen-Ciphertext Attacks (CCA)
* CCA不可区分实验  P r i v K A , Π c c a ( n ) \mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) PrivKA,Πcca​(n):

  1. 挑战者生成密钥  k ← G e n ( 1 n ) k \gets \mathsf{Gen}(1^n) k←Gen(1n);(为了下一步的预言机)
  2. A \mathcal{A} A 被给予输入  1 n 1^n 1n 和对加密函数  E n c k ( ⋅ ) \mathsf{Enc}_k(\cdot) Enck​(⋅)和解密函数 D e c k ( ⋅ ) \mathsf{Dec}_k(\cdot) Deck​(⋅)的 **预言机访问(oracle access)** A E n c k ( ⋅ ) \mathcal{A}^{\mathsf{Enc}_k(\cdot)} AEnck​(⋅) 和  A D e c k ( ⋅ ) \mathcal{A}^{\mathsf{Dec}_k(\cdot)} ADeck​(⋅),输出相同长度  m 0 , m 1 m_0, m_1 m0​,m1​ ;
  3. 挑战者生成随机比特  b ← { 0 , 1 } b \gets \\{0,1\\} b←{0,1},将挑战密文  c ← E n c k ( m b ) c \gets \mathsf{Enc}_k(m_b) c←Enck​(mb​) 发送给  A \mathcal{A} A;
  4. A \mathcal{A} A 继续对除了挑战密文 c c c之外的预言机的访问,输出 b ′ b' b′;如果 b ′ = b b' = b b′=b,则 A \mathcal{A} A成功 P r i v K A , Π c c a = 1 \mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}=1 PrivKA,Πcca​=1,否则 0。

定义:一个加密方案是CCA安全的,如果实验成功的概率与1/2的差异是可忽略的。

  1. 理解CCA安全
* 在现实世界中,敌手可以通过影响被解密的内容来实施CCA。如果通信没有认证,那么敌手可以以通信参与方的身份来发送特定密文。下一页有具体真实案例。

* CCA安全性意味着“non-malleability”(不可锻造性,即改变但不毁坏),不能修改密文来获得新的有效密文。

* 之前的方案中没有CCA安全,因为都不是不可锻造。

* 对基于PRF的CPA安全加密方案的CCA攻击:

  * A \mathcal{A} A 获得挑战密文  c = < r , F k ( r ) ⊕ m b > c = \left<r, F_k(r)\oplus m_{b}\right> c=⟨r,Fk​(r)⊕mb​⟩,并且查询与 c c c只相差了一个翻转的比特的密文 c ′ c' c′,那么

m ′ = c ′ ⊕ F k ( r ) m’ = c’ \oplus F_k® m′=c′⊕Fk​® 应该与 m b m_{b} mb​
除了什么之外都相同?(见下方的补充)

* 问题:上述操作模式也不是CCA安全的(作业)

* 由此,可以总结出CCA下敌手的常用策略:

  * 修改挑战密文 c c c为 c ′ c' c′,并查询解密预言机得到 m ′ m' m′
  * 根据关系,由 m ′ m' m′来猜测被加密明文 m b m_b mb​
补充

在这个情况下, A \mathcal{A} A 获得了挑战密文 c = < r , F k ( r ) ⊕ m b > c = \left<r,
F_k®\oplus m_{b}\right> c=⟨r,Fk​®⊕mb​⟩ 并查询了一个只在一个比特上与 c c c 不同的密文 c ′ c’
c′。我们来分析一下 m ′ = c ′ ⊕ F k ( r ) m’ = c’ \oplus F_k® m′=c′⊕Fk​® 与 m b
m_{b} mb​ 的关系。

首先,我们明确 c c c 的构成:

  • c c c 包含两个部分:一个随机数 r r r 和使用密钥 k k k 的函数 F k ( r ) F_k® Fk​® 与明文 m b m_{b} mb​ 的异或结果。
  • 因此, c = < r , F k ( r ) ⊕ m b > c = \left<r, F_k®\oplus m_{b}\right> c=⟨r,Fk​®⊕mb​⟩。

现在,如果 A \mathcal{A} A 查询了一个与 c c c 只在一个比特上不同的密文 c ′ c’ c′,那么 c ′ c’ c′
也可以写成两部分,但其中一部分与 c c c 有一个比特的差异。这个差异可以在 r r r 部分,也可以在 F k ( r ) ⊕ m b
F_k®\oplus m_{b} Fk​®⊕mb​ 部分。

当 A \mathcal{A} A 计算 m ′ = c ′ ⊕ F k ( r ) m’ = c’ \oplus F_k®
m′=c′⊕Fk​® 时,他们实际上是在解开 F k ( r ) ⊕ m b F_k®\oplus m_{b} Fk​®⊕mb​
的异或操作。这是因为异或操作是可逆的,且当两次使用相同的值时会取消彼此的效果(即 A ⊕ B ⊕ B = A A \oplus B \oplus B =
A A⊕B⊕B=A)。

因此,如果 c ′ c’ c′ 的变化发生在 F k ( r ) F_k® Fk​® 部分,则 m ′ m’ m′ 将与 m b m_{b}
mb​ 完全相同,因为 F k ( r ) F_k® Fk​® 部分的变化被异或操作取消了。但如果变化发生在 r r r
部分,则这个变化不会影响到 F k ( r ) ⊕ m b F_k®\oplus m_{b} Fk​®⊕mb​ 部分,因此 m ′ m’ m′
将与 m b m_{b} mb​ 在一个比特上不同。

综上所述, m ′ m’ m′ 与 m b m_{b} mb​ 将在以下方面相同:

  • 如果变化发生在 F k ( r ) F_k® Fk​® 部分,那么 m ′ m’ m′ 与 m b m_{b} mb​ 完全相同。
  • 如果变化发生在 r r r 部分,那么 m ′ m’ m′ 与 m b m_{b} mb​ 除了那个翻转的比特之外都相同。
填充预言机Padding-Oracle攻击真实案例
  1. Padding-Oracle(填充预言机)攻击真实案例
* CAPTCHA服务商为Web网站提供验证用户是否为人类的服务。为此,一个CAPTCHA服务器与Web服务器间事先共享一个密钥 k k k,服务工作原理如下: 
  1. 当Web服务器验证用户是否为人类时,生成一个消息 w w w并以 k k k加密,向用户发送一个密文 E n c k ( w ) Enc_k(w) Enck​(w);
  2. 用户将密文 E n c k ( w ) Enc_k(w) Enck​(w)转发给CAPTCHA服务器;(可实施填充预言机攻击)
  3. CAPTCHA服务器用密钥 k k k将密文解密,根据解密结果返回给用户信息:一个由 w w w生成的图像,或者坏填充错误;
  4. 用户根据图像获得  w w w 并将  w w w 发送给Web服务器。
* 在第2步,当恶意用户可以利用CAPTCHA服务器会返回给用户坏填充错误这一漏洞,来实施填充错误攻击。
  1. Padding-Oracle(填充预言机)攻击
* 在PKCS #5 padding(填充)标准中,为了将一个消息的长度“填充”到块长度的整数倍,在最后一个块中填充 b b b个字节的 b b b;必要时,添加一个哑块(dummy block,不包含消息的一个填充块)。存在一种攻击手段:当填充错误时,解密服务器返回一个“坏填充错误”,这相当于提供了一个解密预言机,最终可以获得整个明文;
* 具体攻击原理: 
  * 更改密文(包含 I V IV IV部分)并发送给解密服务器;
  * 一旦触发了“坏填充错误”,则说明对密文的更改导致了填充部分内容的更改;否则,对密文的更改导致了原明文部分的更改;
  * 通过仔细修改密文来控制填充部分,从而获得消息长度和内容。
  1. 填充预言机攻击:获得消息长度
* 攻击的第一步判断消息是否为空:在单个块的CBC中,通过更改 I V IV IV的首个字节,攻击者能够获知是否 m m m是否为空。因为如果 m m m是空的话,更改 I V IV IV首个字节将更改解密出的填充内容,解密服务器就会返回坏填充错误(1比特信息),具体分析如下: 
  * 如果 m m m是空的,那么明文会添加一个哑块 { b } b \\{b\\}^b {b}b;
  * PRP的输入为 I V ⊕ { b } b IV\oplus \\{b\\}^b IV⊕{b}b;设 I V IV IV的首个字节为 x x x,则PRP的输入为 ( x ⊕ b ) ∥ ( { ⋅ } b − 1 ⊕ { b } b − 1 ) (x \oplus b) \| (\\{\cdot\\}^{b-1} \oplus \\{b\\}^{b-1}) (x⊕b)∥({⋅}b−1⊕{b}b−1);
  * 将 I V IV IV的首个字节从 x x x改成 y y y变为  y ∥ ( { ⋅ } b − 1 ) y \| (\\{\cdot\\}^{b-1}) y∥({⋅}b−1),不改变 c 1 c_1 c1​解密得到的PRP的输入不会变,而解密出的明文会改变为  ( x ⊕ y ⊕ b ) ∥ { b } b − 1 (x \oplus y \oplus b) \| \\{b\\}^{b-1} (x⊕y⊕b)∥{b}b−1;
  * 上述明文首个字节一定不是 b b b,这是填充格式错误,会触发服务器返回错误;
  * 如果上面的尝试没有触发错误,那么说明消息非空;下一步,发现消息长度是否为1字节,方法与上一步一样,区别在于只改变 I V IV IV的第2个字节;如此继续,获得消息的长度;(作业)
  1. 填充预言机攻击:获得消息内容
* 一旦获得消息的长度,也就知道了填充的长度 b b b,采用下面的方法来获得消息的最后一个字节内容,进而获得整个消息;
* 更改密文中倒数第二块,来获得消息的最后一个字节 s s s;
* 明文的最后一个块  m l a s t = ⋯ s ∥ { b } b m_{last} = \cdots s \| \\{b\\}^{b} mlast​=⋯s∥{b}b,密文的倒数第二个块  c l a s t − 1 = ⋯ t ∥ { ⋅ } b c_{last-1} = \cdots t \| \\{\cdot \\}^{b} clast−1​=⋯t∥{⋅}b;
* 最后一块的PRP输入为 c l a s t − 1 ⊕ m l a s t = ⋯ ( s ⊕ t ) ∥ ( { b } b ⊕ { ⋅ } b ) c_{last-1} \oplus m_{last} = \cdots (s \oplus t) \| (\\{b\\}^b \oplus \\{\cdot \\}^{b}) clast−1​⊕mlast​=⋯(s⊕t)∥({b}b⊕{⋅}b);
* 敌手更改  c l a s t − 1 c_{last-1} clast−1​ 为  c l a s t − 1 ′ = ⋯ u ∥ ( { ⋅ } b ⊕ { b } b ⊕ { b \+ 1 } b ) c_{last-1}' = \cdots u \| (\\{\cdot \\}^{b} \oplus \\{b\\}^{b} \oplus \\{b+1\\}^{b}) clast−1′​=⋯u∥({⋅}b⊕{b}b⊕{b+1}b);其中, u u u是敌手猜测的某个字节;
* 解密获得最后一块明文 m l a s t ′ = c l a s t − 1 ⊕ m l a s t ⊕ c l a s t − 1 ′ = ⋯ ( s ⊕ t ⊕ u ) ∥ { b \+ 1 } b m'_{last} = c_{last-1} \oplus m_{last} \oplus c_{last-1}' = \cdots (s \oplus t \oplus u)\| \\{ b+1 \\}^b mlast′​=clast−1​⊕mlast​⊕clast−1′​=⋯(s⊕t⊕u)∥{b+1}b;
* 如果没有返回坏填充错误,那么意味着填充了 b \+ 1 b+1 b+1个字节的 b \+ 1 b+1 b+1,所以  s ⊕ t ⊕ u = ( b \+ 1 ) s \oplus t \oplus u = (b+1) s⊕t⊕u=(b+1) ,而  s = t ⊕ u ⊕ ( b \+ 1 ) s = t \oplus u \oplus (b+1) s=t⊕u⊕(b+1) 。
  1. 总结
* 略

学习网络安全技术的方法无非三种:

第一种是报网络安全专业,现在叫网络空间安全专业,主要专业课程:程序设计、计算机组成原理原理、数据结构、操作系统原理、数据库系统、
计算机网络、人工智能、自然语言处理、社会计算、网络安全法律法规、网络安全、内容安全、数字取证、机器学习,多媒体技术,信息检索、舆情分析等。

第二种是自学,就是在网上找资源、找教程,或者是想办法认识一-
些大佬,抱紧大腿,不过这种方法很耗时间,而且学习没有规划,可能很长一段时间感觉自己没有进步,容易劝退。

如果你对网络安全入门感兴趣,那么你需要的话可以点击这里
👉[网络安全重磅福利:入门&进阶全套282G学习资源包免费分享!](https://mp.weixin.qq.com/s/BWb9OzaB-
gVGVpkm161PMw)

第三种就是去找培训。

![image.png](https://img-
blog.csdnimg.cn/img_convert/58bec76876e81d23709a090231e9e0bf.png)

接下来,我会教你零基础入门快速入门上手网络安全。

网络安全入门到底是先学编程还是先学计算机基础?这是一个争议比较大的问题,有的人会建议先学编程,而有的人会建议先学计算机基础,其实这都是要学的。而且这些对学习网络安全来说非常重要。但是对于完全零基础的人来说又或者急于转行的人来说,学习编程或者计算机基础对他们来说都有一定的难度,并且花费时间太长。

第一阶段:基础准备 4周~6周

这个阶段是所有准备进入安全行业必学的部分,俗话说:基础不劳,地动山摇
![image.png](https://img-
blog.csdnimg.cn/img_convert/44dd65e103a3ce90b8500717e19b108d.png)

第二阶段:web渗透

学习基础 时间:1周 ~ 2周:

① 了解基本概念:(SQL注入、XSS、上传、CSRF、一句话木马、等)为之后的WEB渗透测试打下基础。
② 查看一些论坛的一些Web渗透,学一学案例的思路,每一个站点都不一样,所以思路是主要的。
③ 学会提问的艺术,如果遇到不懂得要善于提问。
![image.png](https://img-
blog.csdnimg.cn/img_convert/442b7a338582713846cc447ecff221bd.png)

配置渗透环境 时间:3周 ~ 4周:

① 了解渗透测试常用的工具,例如(AWVS、SQLMAP、NMAP、BURP、中国菜刀等)。
② 下载这些工具无后门版本并且安装到计算机上。
③ 了解这些工具的使用场景,懂得基本的使用,推荐在Google上查找。

渗透实战操作 时间:约6周:

① 在网上搜索渗透实战案例,深入了解SQL注入、文件上传、解析漏洞等在实战中的使用。
② 自己搭建漏洞环境测试,推荐DWVA,SQLi-labs,Upload-labs,bWAPP。
③ 懂得渗透测试的阶段,每一个阶段需要做那些动作:例如PTES渗透测试执行标准。
④ 深入研究手工SQL注入,寻找绕过waf的方法,制作自己的脚本。
⑤ 研究文件上传的原理,如何进行截断、双重后缀欺骗(IIS、PHP)、解析漏洞利用(IIS、Nignix、Apache)等,参照:上传攻击框架。
⑥ 了解XSS形成原理和种类,在DWVA中进行实践,使用一个含有XSS漏洞的cms,安装安全狗等进行测试。
⑦ 了解一句话木马,并尝试编写过狗一句话。
⑧ 研究在Windows和Linux下的提升权限,Google关键词:提权
![image.png](https://img-
blog.csdnimg.cn/img_convert/820f500673a4a0a2432e6c3d7e2ba80e.png)
以上就是入门阶段

第三阶段:进阶

已经入门并且找到工作之后又该怎么进阶?详情看下图
![image.png](https://img-
blog.csdnimg.cn/img_convert/b28d31c9a3414e91ec46eb307d360eab.png)

给新手小白的入门建议:
新手入门学习最好还是从视频入手进行学习,视频的浅显易懂相比起晦涩的文字而言更容易吸收,这里我给大家准备了一套网络安全从入门到精通的视频学习资料包免费领取哦!

如果你对网络安全入门感兴趣,那么你需要的话可以点击这里
👉[网络安全重磅福利:入门&进阶全套282G学习资源包免费分享!](https://mp.weixin.qq.com/s/BWb9OzaB-
gVGVpkm161PMw)

![](https://img-
blog.csdnimg.cn/img_convert/8c55c2422bb7c77bda0f37e9719da98f.jpeg)

学习网络安全技术的方法无非三种:

第一种是报网络安全专业,现在叫网络空间安全专业,主要专业课程:程序设计、计算机组成原理原理、数据结构、操作系统原理、数据库系统、 计算机网络、人工智能、自然语言处理、社会计算、网络安全法律法规、网络安全、内容安全、数字取证、机器学习,多媒体技术,信息检索、舆情分析等。

第二种是自学,就是在网上找资源、找教程,或者是想办法认识一-些大佬,抱紧大腿,不过这种方法很耗时间,而且学习没有规划,可能很长一段时间感觉自己没有进步,容易劝退。

如果你对网络安全入门感兴趣,那么你需要的话可以点击这里👉网络安全重磅福利:入门&进阶全套282G学习资源包免费分享!

第三种就是去找培训。

image.png

接下来,我会教你零基础入门快速入门上手网络安全。

网络安全入门到底是先学编程还是先学计算机基础?这是一个争议比较大的问题,有的人会建议先学编程,而有的人会建议先学计算机基础,其实这都是要学的。而且这些对学习网络安全来说非常重要。但是对于完全零基础的人来说又或者急于转行的人来说,学习编程或者计算机基础对他们来说都有一定的难度,并且花费时间太长。

第一阶段:基础准备 4周~6周

这个阶段是所有准备进入安全行业必学的部分,俗话说:基础不劳,地动山摇
image.png

第二阶段:web渗透

学习基础 时间:1周 ~ 2周:

① 了解基本概念:(SQL注入、XSS、上传、CSRF、一句话木马、等)为之后的WEB渗透测试打下基础。
② 查看一些论坛的一些Web渗透,学一学案例的思路,每一个站点都不一样,所以思路是主要的。
③ 学会提问的艺术,如果遇到不懂得要善于提问。
image.png

配置渗透环境 时间:3周 ~ 4周:

① 了解渗透测试常用的工具,例如(AWVS、SQLMAP、NMAP、BURP、中国菜刀等)。
② 下载这些工具无后门版本并且安装到计算机上。
③ 了解这些工具的使用场景,懂得基本的使用,推荐在Google上查找。

渗透实战操作 时间:约6周:

① 在网上搜索渗透实战案例,深入了解SQL注入、文件上传、解析漏洞等在实战中的使用。
② 自己搭建漏洞环境测试,推荐DWVA,SQLi-labs,Upload-labs,bWAPP。
③ 懂得渗透测试的阶段,每一个阶段需要做那些动作:例如PTES渗透测试执行标准。
④ 深入研究手工SQL注入,寻找绕过waf的方法,制作自己的脚本。
⑤ 研究文件上传的原理,如何进行截断、双重后缀欺骗(IIS、PHP)、解析漏洞利用(IIS、Nignix、Apache)等,参照:上传攻击框架。
⑥ 了解XSS形成原理和种类,在DWVA中进行实践,使用一个含有XSS漏洞的cms,安装安全狗等进行测试。
⑦ 了解一句话木马,并尝试编写过狗一句话。
⑧ 研究在Windows和Linux下的提升权限,Google关键词:提权
image.png
以上就是入门阶段

第三阶段:进阶

已经入门并且找到工作之后又该怎么进阶?详情看下图
image.png

给新手小白的入门建议:
新手入门学习最好还是从视频入手进行学习,视频的浅显易懂相比起晦涩的文字而言更容易吸收,这里我给大家准备了一套网络安全从入门到精通的视频学习资料包免费领取哦!

如果你对网络安全入门感兴趣,那么你需要的话可以点击这里👉网络安全重磅福利:入门&进阶全套282G学习资源包免费分享!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值