关注我,后期文章全部免费开放,一起推进AI医疗的发展
🚀 核心主题:如何构建95%准确率的智能导诊系统?
💡 技术突破:结合BERT+知识图谱的混合模型设计
一、智能导诊架构设计
python
基于BERT的意图识别模型(PyTorch)
from transformers import BertTokenizer, BertForSequenceClassification
import torch
class TriageModel(torch.nn.Module):
def init(self, num_labels=10):
super().init()
self.bert = BertForSequenceClassification.from_pretrained(‘bert-base-chinese’, num_labels=num_labels)
self.dropout = torch.nn.Dropout(0.1)
def forward(self, input_ids, attention_mask):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = outputs[1]
return self.dropout(pooled_output)
知识图谱查询示例(Neo4j)
from py2neo impo