《AI医疗系统开发实战录》第6期——智能导诊系统实战

关注我,后期文章全部免费开放,一起推进AI医疗的发展
🚀 核心主题:如何构建95%准确率的智能导诊系统?
💡 技术突破:结合BERT+知识图谱的混合模型设计

​一、智能导诊架构设计
python

基于BERT的意图识别模型(PyTorch)

from transformers import BertTokenizer, BertForSequenceClassification
import torch

class TriageModel(torch.nn.Module):
def init(self, num_labels=10):
super().init()
self.bert = BertForSequenceClassification.from_pretrained(‘bert-base-chinese’, num_labels=num_labels)
self.dropout = torch.nn.Dropout(0.1)

def forward(self, input_ids, attention_mask):
    outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
    pooled_output = outputs[1]
    return self.dropout(pooled_output)

知识图谱查询示例(Neo4j)

from py2neo impo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值