Fastmri库和数据集的使用,多模态数据构建

安装包

pip install fastmri

建议

pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1
pip install pytorch-lightning==2.0.0

图像处理

def read_img(volume_kspace,i):
    slice_kspace = volume_kspace[i]
    slice_kspace2 = T.to_tensor(slice_kspace)   
    ori_space = fastmri.ifft2c(slice_kspace2)    
    ori_image_abs = fastmri.complex_abs(ori_space) 
    ori_image_abs = (ori_image_abs - ori_image_abs.min())/(ori_image_abs.max()-ori_image_abs.min())
    mask_func = RandomMaskFunc(center_fractions=[0.04], accelerations=[8])    
    masked_kspace, mask, _ = T.apply_mask(slice_kspace2, mask_func)
    sampled_image = fastmri.ifft2c(masked_kspace)           
    sampled_image_abs = fastmri.complex_abs(sampled_image)  
    image_data = sampled_image_abs
    image_data = (image_data - image_data.min()) / (image_data.max() - image_data.min())
    return ori_image_abs,image_data

构建paired数据集

class knee_train_paired(data.Dataset):
    def __init__(self,folder_dir,csv_file_path,split = "train"):
        self.data = pd.read_csv(csv_file_path, sep=',', header=None, encoding='utf-8')
        self.ids = self.data.iloc[:, :2]
        self.id_list = sorted(self.ids.values.tolist())
        self.folder_dir = folder_dir
        self.size = 256
        self.t1_paths = [os.path.join(self.folder_dir, f"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值