安装包
pip install fastmri
建议
pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1
pip install pytorch-lightning==2.0.0
图像处理
def read_img(volume_kspace,i):
slice_kspace = volume_kspace[i]
slice_kspace2 = T.to_tensor(slice_kspace)
ori_space = fastmri.ifft2c(slice_kspace2)
ori_image_abs = fastmri.complex_abs(ori_space)
ori_image_abs = (ori_image_abs - ori_image_abs.min())/(ori_image_abs.max()-ori_image_abs.min())
mask_func = RandomMaskFunc(center_fractions=[0.04], accelerations=[8])
masked_kspace, mask, _ = T.apply_mask(slice_kspace2, mask_func)
sampled_image = fastmri.ifft2c(masked_kspace)
sampled_image_abs = fastmri.complex_abs(sampled_image)
image_data = sampled_image_abs
image_data = (image_data - image_data.min()) / (image_data.max() - image_data.min())
return ori_image_abs,image_data
构建paired数据集
class knee_train_paired(data.Dataset):
def __init__(self,folder_dir,csv_file_path,split = "train"):
self.data = pd.read_csv(csv_file_path, sep=',', header=None, encoding='utf-8')
self.ids = self.data.iloc[:, :2]
self.id_list = sorted(self.ids.values.tolist())
self.folder_dir = folder_dir
self.size = 256
self.t1_paths = [os.path.join(self.folder_dir, f"