概率论与数理统计 2 Probability(概率) (下篇)

2.3 Counting Techniques

If a list of the outcomes is easily obtained(结果列表很容易获得) and N is small, then N and N(A) can be determined without the benefit of any general counting principles(一般计数原则).

There are, however, many experiments for which the effort involved in constructing such a list is prohibitive(令人望而却步的) because N is quite large.

The Product Rule(乘法原理) for Ordered Pairs

Our first counting rule applies to any situation in which a set (event) consists of ordered pairs(有序数对) of objects and we wish to count the number of such pairs.

If the first element or object of an ordered pair can be selected in n 1 n_1 n1 ways, and for each of these n 1 n_1 n1 ways the second element of the pair can be selected in n 2 n_2 n2 ways, then the number of pairs is n 1 n 2 n_1n_2 n1n2.

In many counting and probability problems, a configuration called a tree diagram(树状图) can be used to represent pictorially all the possibilities.such as:

在这里插入图片描述

A More General Product Rule

We will call an ordered collection of k objects a k-tuple (so a pair is a 2-tuple and a triple is a 3-tuple).

Suppose a set consists of ordered collections of k elements (k-tuples) and that there are n 1 n_1 n1 possible choices for the first element; for each choice of the first element, there are n 2 n_2 n2 possible choices of the second element; . . . ; for each possible choice of the first elements, there are n k n_k nk choices of the k k kth element. Then there are n possible k-tuples.

Permutations(排列) and Combinations(组合)

An ordered subset is called a permutation. The number of permutations of size k that can be formed from the n individuals or objects in a group will be denoted by P k , n P_{k,n} Pk,n. An unordered subset is called a combination. One way to denote the number of combinations is C k , n C_{k,n} Ck,n, but we shall instead use notation that is quite common in probability books: ( n k ) \dbinom{n}{k} (kn) , read “n choose k”

P k , n = n ! ( n − k ) ! P_{k,n}=\frac{n!}{(n-k)!} Pk,n=(nk)!n!

( n k ) = P k , n k ! = n ! k ! ( n − k ) ! \dbinom{n}{k}=\frac{P_{k,n}}{k!}=\frac{n!}{k!(n-k)!} (kn)=k!Pk,n=k!(nk)!n!

Notice that ( n n ) = 1 \dbinom{n}{n}=1 (nn)=1 and ( n 0 ) = 1 \dbinom{n}{0}=1 (0n)=1 since there is only one way to choose a set of (all) n elements or of no elements, and ( n 1 ) = n \dbinom{n}{1}=n (1n)=n since there are n subsets of size 1.

2.4 Conditional Probability(条件概率)

For a particular event A, we have used P(A) to represent the probability, assigned to A; we now think of P(A) as the original(原始的), or unconditional(无条件的) probability, of the event A.

We will use the notation P(A|B) to represent the conditional probability of A given that the event B has occurred(A在B条件下发生的概率). B is the “conditioning event(条件事件)”.

The Definition of Conditional Probability

For any two events A and B with P(B)>0 , the conditional probability of A given that B has occurred is defined by

P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B)=\frac{P(A \cap B)}{P(B)} P(AB)=P(B)P(AB)

The Multiplication Rule for P(A ∩ \cap B)

The Multiplication Rule

P ( A ∩ B ) = P ( A ∣ B ) ⋅ P ( B ) P(A \cap B)=P(A|B) \cdot P(B) P(AB)=P(AB)P(B)

The multiplication rule is most useful when the experiment consists of several stages in succession(由几个连续的阶段组成时).

P ( A 1 ∩ A 2 ∩ A 3 ) = P ( A 3 ∣ A 1 ∩ A 2 ) ⋅ P ( A 1 ∩ A 2 ) = P ( A 3 ∣ A 1 ∩ A 2 ) ⋅ P ( A 2 ∣ A 1 ) ⋅ P ( A 1 ) P(A_1 \cap A_2 \cap A_3)=P(A_3|A_1 \cap A_2) \cdot P(A_1 \cap A_2)=P(A_3|A_1 \cap A_2) \cdot P(A_2 | A_1) \cdot P(A_1) P(A1A2A3)=P(A3A1A2)P(A1A2)=P(A3A1A2)P(A2A1)P(A1)

where A 1 A_1 A1 occurs first, followed by A 2 A_2 A2, and finally A 3 A_3 A3.

Bayes’ Theorem(贝叶斯定理)

Events A 1 A_1 A1, . . . , A k A_k Ak are mutually exclusive(互斥的) if no two have any common outcomes.

The events are exhaustive(穷举的) if one A i A_i Ai must occur, so that A 1 A_1 A1 ∪ \cup ∪ \cup A k A_k Ak = S S S

The Law of Total Probability(全概率公式):

Let A 1 A_1 A1, . . . , A k A_k Ak be mutually exclusive and exhaustive events. Then for any other event B,

P ( B ) = P ( B ∣ A 1 ) P ( A 1 ) + . . . + P ( B ∣ A k ) P ( A k ) = ∑ i = 1 k P ( B ∣ A i ) P ( A i ) P(B)=P(B|A_1)P(A_1)+...+P(B|A_k)P(A_k)=\sum_{i=1}^{k} P(B|A_i)P(A_i) P(B)=P(BA1)P(A1)+...+P(BAk)P(Ak)=i=1kP(BAi)P(Ai)

在这里插入图片描述

Bayes’ Theorem(贝叶斯定理):

Let A 1 A_1 A1, A 2 A_2 A2, . . . , A k A_k Ak be a collection of k mutually exclusive and exhaustive events with prior probabilities P ( A i ) ( i = 1 , . . . , k ) P(A_i)(i=1,...,k) P(Ai)(i=1,...,k). Then for any other event B for which P ( B ) > 0 P(B)>0 P(B)>0, the posterior probability of A j A_j Aj given that B has occurred is

P ( A j ∣ B ) = P ( A j ∩ B ) P ( B ) = P ( B ∣ A j ) P ( A j ) ∑ i = 1 k P ( B ∣ A i ) P ( A i ) j = 1 , . . . , k P(A_j|B)=\frac{P(A_j\cap B)}{P(B)}=\frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{k} P(B|A_i)P(A_i)}\hspace{1cm}j=1,...,k P(AjB)=P(B)P(AjB)=i=1kP(BAi)P(Ai)P(BAj)P(Aj)j=1,...,k

2.5 Independence

Definition:

Two events A and B are independent if P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A) and are dependent otherwise.

The definition of independence might seem “unsymmetric” because we do not also demand that P ( B ∣ A ) = P ( B ) P(B|A)=P(B) P(BA)=P(B). However, using the definition of conditional probability and the multiplication rule,

P ( B ∣ A ) = P ( A ∩ B ) P ( A ) = P ( A ∣ B ) P ( B ) P ( A ) P(B|A)=\frac{P(A\cap B)}{P(A)}=\frac{P(A|B)P(B)}{P(A)} P(BA)=P(A)P(AB)=P(A)P(AB)P(B)

The right-hand side of Equation is P ( B ) P(B) P(B) if and only if P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A) (independence).

It is also straightforward to show that if A and B are independent, then so are the following pairs of events: (1) A’ and B, (2) A and B’, and (3) A’ and B’.

The Multiplication Rule for P ( A ∩ B ) P(A\cap B) P(AB)

Proposition:

P ( A ∩ B ) = P ( A ) ⋅ P ( B ) P(A\cap B)=P(A)\cdot P(B) P(AB)=P(A)P(B)

Independence of More Than Two Events

Definition:

Events A 1 A_1 A1, . . . , A n A_n An are mutually independent if for every k ( k = 2 , 3 , . . . , n ) k(k=2,3,...,n) k(k=2,3,...,n) and every subset of indices(目录) i 1 i_1 i1, i 2 i_2 i2, . . . , i k i_k ik,

P ( A i 1 ∩ A i 2 ∩ . . . ∩ A i k ) = P ( A i 1 ) ⋅ P ( A i 2 ) ⋅ . . . ⋅ P ( A i k ) P(A_{i_1}\cap A_{i_2}\cap...\cap A_{i_k})=P(A_{i_1})\cdot P(A_{i_2})\cdot ...\cdot P(A_{i_k}) P(Ai1Ai2...Aik)=P(Ai1)P(Ai2)...P(Aik)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lum0s!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值