自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 pip安装出现的问题之SSL,一大堆WARNING问题

起源是上边这张截图,使用pip安装scikit-learn这个库的时候始终不成功。结果都不行,试着把梯子,也就是vpn给关掉,再试一次就好了。

2024-07-23 14:18:49 916

原创 Pytorch安装教程,防止以后忘记

pytorch

2024-06-06 13:29:35 376

原创 conda创建环境出现错误Http error!

condarc文件的路径在:C:\Users\你的用户名\。保存,然后重新试一下,我就好了。

2024-06-06 12:57:08 137

原创 anaconda创建虚拟环境报错!

你们可以试一下,希望有帮助,我看还有其他解决办法,我的问题就是这样了.第二次重新安装anaconda的时候又出现这个问题了,特此记录一下.错误: 然后出现一大堆,还有乱码什么的.这里就不展示了.我的就这么神奇的好了!

2024-06-04 21:10:41 138

原创 科研:如何租用服务器来训练自己的模型?

root是服务器的根目录,autodl-tmp是数据盘,可以在该目录新建一个文件夹,用来存放项目文件。这里选择自动上传项目文件到服务器,如果你的项目里边有数据集的话,建议单独拖拽到服务器,你可以光上传代码。进入算力市场,这里边有各种各样的机器,选择你需要的配置。价格可以按照小时收费,如果增加GPU的数量,价格也会成倍增加。你可以配置自己的conda下环境,安装pytorch,pip一系列的库。将pycharm的文件右键,可以上传到服务器的同步目录下。租用之后,可以在容器实例里边看到租用的机器。

2024-04-30 17:14:03 1190

原创 错误处理:IndexError: index out of range in self

按理论来说,这里的只需要扩大一些num_embeddings就好了,但是我觉得根本原因在于你输入的张量为什么会比num_embeddings大,你可以试着debug一下。这是我定义嵌入层的地方,n_quadkey就是上边的num_embeddings,这里我们调大一些,应该不会有啥影响吧,反正我就这么干的,你可以试试,运行一下就好了!首先你要找到什么时候定义嵌入层的,一般是model内部,我采用的方法是在定义嵌入层的时候将num_embeddings开大一点。那么如何解决这个问题呢,

2024-04-30 11:09:38 972

原创 将Foursquare:dataset_TSMC2014_NYC 数据集处理成gowalla格式,赶紧收藏!!!

本文主要提供了,将Foursquare :dataset_TSMC2014_NYC数据集处理成gowalla数据集格式的代码,如果需要可以收藏!

2024-04-28 17:19:36 515 1

原创 python使用pip安装模块出错 Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None))

看他:python使用pip安装模块出错 Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) - shimmernight - 博客园 (cnblogs.com)

2024-04-27 19:51:24 202 2

原创 Python之文件的读写操作(数据处理系列)

实际读文件过程中,你可能需要一行一行读进来,然后split分割啊len计算长度啊strip去掉前后空格啊,这些都是需要你看别人优秀的代码,一点一点积累的。文件的读写操作就这么多知识,重点是你需要在实战中积累技巧,别人怎么搞的,然后形成自己的代码模板。我相信,你看完这篇文章,已经能对文件进行简单的读写操作了,那么接下来请找个实战项目,去看看优秀的编程者如何使用技巧的吧 ~ 下期可能开始更新Python数据预处理相关的知识,或者机器学习的知识了。

2024-04-27 18:10:37 938 3

原创 字符编码(计算机知识理解篇)

其实每个计算机专业的人都应该知道:计算机中存储的都是01的二进制数字,每个bit位存一个二进制数字0或者1,每个字节Byte由8个bit位组成,就像2个bit能存储4个数字一样:00,01,10,11;字符编码就是将字符集中的字符映射成一些数字,只不过这些数字是二进制表示而成的。计算机通过存储这些数字的二进制表示,来存储相应的字符。好了,这讲就这么多知识,如果你想要了解的更详细一些,可以去查一下相关资料,记得一键三连哦~计算机中存储的基本单位,以及单位之间的换算是什么样的呢?

2024-04-27 15:54:01 330 1

原创 模型的保存和加载(pytorch方法学习系列)

pytorch模型的保存和加载

2024-04-25 14:50:56 920 1

原创 SASRec论文代码复现讲解(教你如何读代码)倾囊相授!

本文是我个人的学习总结,我也是初学者,但是我有很认真在思考做笔记,如果你也是初学者,我相信这对你的帮助很大,因为下面是作为刚入门的我的思考过程,这次先讲代码中部分函数,后边我会在本文慢慢更新,记得关注。可以先试着看看下边的内容,或许对你有所帮助!目前,我比较喜欢一个模块一个模块 or 一个函数一个函数去解决,我可能先看数据怎么处理划分的,每个模块我会用代码测试一下,可以看一下输出结果跟自己想的一不一样,遇到不会的函数就去百度+自己写代码测试,非常好用。

2024-04-22 15:08:24 1766

原创 Transformer代码(Pytorch实现和详解)!!!

这个是第一版,有些代码如果不对,欢迎在评论指正,后续会慢慢改,我也是刚接触transformer,若有些地方理解不对还请指正。

2024-04-18 16:42:39 2789 4

原创 pytorch深度学习入门 第9讲(多分类问题)

那么该如何使得我们输出的分布能够满足这两个条件呢?只需要在最后一层的输出使用softmax函数,其他地方仍然使用sigmoid函数,这样输出的就是一个分布了。这里处理图象数据集的时候需要使用transform进行一个转换,将28 x 28 转换为 1 x 28 x 28的张量,多增加了一个channel维度。,拿手写体数字识别来说,也就是说对于一个样本x,输出10个概率值,就是一个分布。3)新引入了CrossEntropyLoss(包含了softmax操作)、ReLu函数。这是其中一个样本的图象。

2024-04-16 15:05:55 462 1

原创 pytorch深度学习入门 第8讲(加载数据集DataLoader使用)

之前讨论过随机梯度下降的时候,有的用一整个batch更新 or 有的用一个一个样本更新,为了平衡两者,现在每次用的是mini-batch来更新。原理: 将数据集送入Dataloader中,会自动(shuffle = True) 随机打乱样本,然后生成Iterable Loader对象,其中包含多个Batch。dataloader主要作用是把给定的数据集,生成一个一个mini-batch。迭代:多少次迭代意味着多少个batch ,每次迭代就是用一个batch的数据集训练,然后更新。

2024-04-16 12:48:37 464

原创 pytorch深度学习入门 第7讲(处理多维度特征的输入)

在神经网络中,我们的目标是将一个多维空间非线性地映射到一个1维空间,为了使我们的模型更加复杂,可以将模型进行多次线性变换,并在每个linear后边加一个sigmoid激活函数引入非线性。注意:这里并没有做mini-batch的操作,而是把所有数据都放到model了,后面会讲如何做mini-batch操作。这里训练1000,loss还是很大,应该是要训练更多epoch,所以这里先不写测试了,麻烦。对于每个样本xi->yi的计算过程如上图,x的每个特征都要乘以一个w。还是以二分类问题为例,输入转换为多个维度。

2024-04-16 11:52:10 288

原创 pytorch深度学习入门 第6讲(Pytorch实现逻辑斯蒂回归)

给定输入x,然后判断x属于y集合中的哪个类别,分类任务的model输出的是一个概率分布(包括每个类别的概率,所有概率加合为1),认定概率最大的类别为预测结果。下面看一个简单例子。线性模型中的loss,计算的是两个标量之间的差值。逻辑回归中的loss计算的是两个分布之间的差异,这个损失函数叫“注:并不是logistic function能够进行概率转换,而是保证概率的输出值保持在[0,1]之间,之后讨论。注:计算概率的时候,只需要计算P(y=1)一个值就行,因为P(y=0) = 1 - P(y=1)

2024-04-16 11:01:29 264

原创 pytorch深度学习入门 第5讲(Pytorch实现线性回归)

比如:1) 设计model的时候,在init中定义forward中需要用到的linear层,在forward中调用定义好的层进行前向传播,同时也在构建计算图,最后求出输出值y_pred.感觉就是优化器管理参数的值,反向传播求参数的梯度。而且一定记住是对loss进行的反馈传播,整个计算图的过程,是从输入x经过model 的多层得到y_pred,再进行Loss(y_pred,y_data)计算得到loss。包括两个部分,首先通过model求得y_pred ,然后通过y_pred和y—_data求loss。

2024-04-16 09:09:30 391

原创 pytorch深度学习入门 第4讲(反向传播)

之前我们的梯度是根据公式求导得到的,但是实际神经网络中,每两层之间都有权重,而且权重的数量不再是一个w,所以我们需要一种方法来自动求Loss对w的导数。所以我们在每个线性变化之后都做一个非线性变换。如果张量只有一个值,可以使用w.grad.item()转化为python中的标量,总结:张量不要轻易做计算,否则会产生计算图。原理:将神经网络看作是一个计算图,在图上传播梯度,最后根据链式法则求得:Loss对w得导数。Backward:就是从后往前求梯度,最后求出 loss对w的导数,然后就能用这个做更新。

2024-04-16 00:04:41 318

原创 pytorch深度学习入门 第3讲(梯度下降)

因为纯随机梯度下降算法和梯度下降算法各有不好的地方,所以在这两者取个平衡。在深度学习中随机梯度下降算法,采用的是Batch梯度的方法。更新的方式:权重w沿着当前梯度的反方向前进,w更新的公式如上图,即。小结:这讲主要引入了随机梯度下降算法,在pytorch中使用的随机梯度下降算法,原理就是Batch方法。随机梯度与之前方法不同:每次w的更新只需要计算一个样本的loss值就可以,而需要计算loss的总和。注:在训练过程中,随着epoch的增加,loss逐渐减小,并趋于一定值,说明我们的训练是有效的。

2024-04-15 23:09:12 961 1

原创 pytorch深度学习入门 第2讲(线性模型)

pytorch深度学习实践 b站刘二大人

2024-04-15 21:09:28 132 1

原创 TypeError: Student() takes no arguments

TypeError: ****() takes no arguments

2024-03-14 11:09:24 216

原创 冒泡排序模板搞定啦~

2021-10-06 21:11:46 70

原创 选择排序模板搞定啦

2021-10-06 21:08:01 100

原创 二分查找学习

2021-10-03 12:52:57 48

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除