- 博客(59)
- 收藏
- 关注
原创 Linux系统中那些重要的文件路径
是一个定义了Linux和其他类Unix操作系统中目录结构和目录内容的标准。当前版本为FHS 3.0,由Linux Foundation维护。Linux文件系统采用,这种设计遵循了Unix哲学中的"一切皆文件"原则。与 Windows 系统不同,Linux 的文件系统采用单一的树形结构,从根目录(/)开始,所有文件和目录都在其下。
2025-12-31 10:03:49
826
原创 socket.socket模块--网络通信
主要指的是 Python 编程语言中socket模块里的函数,用于创建一个新的 socket 对象。socket 是一个通信端点,用于在网络上发送和接收数据,或在同一台机器上的进程之间进行通信。在 Python 中,你必须首先导入socket模块,然后调用socket()函数来实例化一个新的 socket:这行代码使用常见的默认参数创建了一个套接字对象s: 指定套接字类型为流式套接字,该套接字使用传输控制协议(TCP)进行可靠、面向连接的通信。创建后,套接字对象s可以使用各种方法(如bind()
2025-12-27 10:37:55
935
原创 深入理解Linux运维之mount命令,从原理到实践
简单来说,挂载就是将一个存储设备(如硬盘分区、U盘、CD-ROM)或一个虚拟文件系统,关联到 Linux 目录树结构的某个目录(称为挂载点)的过程。挂载指的是将硬件设备的文件系统和 Linux 系统中的文件系统,通过指定目录(作为挂载点)进行关联。mount命令是用于将文件/设备资源挂载到系统的指定目录,进行挂载后,用户便可以在系统的挂载目录中访问挂载资源了。在Linux系统中,文件系统挂载是一个核心概念,它建立了存储设备与目录树之间的桥梁。挂载(mount)的本质:VFS与文件系统驱动。
2025-12-25 12:15:29
733
原创 【踩坑】HyperV桥接模式下Ubuntu24.02虚拟机固定IP设置
摘要:本文记录了在Hyper-V桥接模式下配置Ubuntu 24.04虚拟机固定IP时遇到的网络连接问题及解决过程。作者首先尝试通过修改Netplan配置文件设置静态IP,但导致虚拟机完全断网,出现"Destination Host Unreachable"错误。经过深入排查发现,在WiFi桥接模式下手动设置静态IP会破坏Hyper-V的MAC地址转换机制。通过测试多种解决方案(包括DHCP重置、虚拟交换机重建、MAC地址欺骗等)均未奏效后,最终通过回滚到之前的检查点成功恢复网络连接。文
2025-12-24 14:18:55
1081
原创 WSL下创建的Ubuntu系统与Windows实现显卡直通
通常清理完 Linux 内部自行安装的驱动后,WSL 会自动恢复正确的直通状态。如果这个命令能正常输出 MX230 的信息,说明硬件直通物理层是 OK 的,问题纯粹是 Linux 内部的。在 WSL2 环境下,你的 Windows 已经能识别显卡,但 Ubuntu 端的。的操作,导致 Linux 自带的驱动与 Windows 映射过来的驱动发生了。在 WSL 的终端里,其实可以直接调用 Windows 侧的工具。根据你提供的两张截图,可以确定你的 Ubuntu 系统中。
2025-12-22 20:47:32
580
原创 侧信道攻击(Side-Channel Attacks)
侧信道攻击是**“醉翁之意不在酒”测量系统对请求的反应速度**。(重复几千次)(调用纳秒级计时器)(申请大数组刷缓存)这些特征组合在一起,就是侧信道攻击的指纹。
2025-12-18 15:39:38
762
原创 批量匿名数据重识别(debug记录)
这份代码模拟了一个真实的场景:平台发布了由网格(Grid)构成的匿名船舶密度图,攻击者通过下载连续时间段的密度图,利用“差分攻击”技术还原了一艘隐蔽船舶的移动轨迹。
2025-12-08 18:04:31
822
原创 LSTM模型做二分类任务1(PyTorch实现)
接下来我们需要将(X_train_scaled, y_train)、(X_val_scaled, y_val)、(X_test_scaled, y_test)分别传入我们自定义的DataSe类,分别返回train_dataset、val_dataset、test_dataset;操作取每个序列的最后一个时间步的输出last_lstm_out;对X_train、X_val、X_test分别进行标准化处理,返回X_train_scaled、X_val_scaled、X_test_scaled。
2025-10-29 20:36:01
1164
2
原创 Pytorch深度学习实战
本文介绍了PyTorch深度学习框架的基本使用方法和神经网络训练原理。主要内容包括:1. PyTorch张量与NumPy数组的转换方法及语法对比;2. 神经网络训练的核心过程(前向传播、反向传播、参数更新)及关键概念(batch_size、epochs);3. 数据集处理技巧(类型转换、GPU加载、划分方法);4. 神经网络搭建指南(层数设置、激活函数选择)及不同任务(分类/回归)的输出层设计;5. 两种梯度下降实现(批量/小批量)的代码示例。文章重点讲解了如何正确选择激活函数和损失函数,并提供了模型训练评
2025-10-24 18:30:03
1083
原创 Deep-Learning-Is-Nothing(First Day)
深度学习没什么了不起,也不过就是大力出奇迹。弄一个 30 天的学习计划,拿捏!!!
2025-10-20 16:14:44
624
原创 Vscode调试python项目(最优雅的方式)
本文介绍了使用VSCode进行Python项目远程调试的方法。主要步骤包括:1)安装debugpy包和VSCode Python插件;2)在代码中添加debugpy监听配置;3)创建launch.json调试配置文件;4)通过sh脚本启动项目并附加调试。调试时需确保端口一致,并在VSCode中选择对应配置进行attach。该方法适用于深度学习/NLP等大型项目调试,支持deepspeed/torchrun等复杂参数场景。文末还提供了设置Python文件头模板的参考链接。
2025-09-25 13:54:04
525
原创 一文了解医保
医保分为城乡居民医保和城镇职工医保两种,具体报销政策因地而异。使用医保需注意:1)在定点医院就诊;2)门诊(挂号、检查购药)和住院均可报销,住院报销比例高于门诊,小医院报销比例高于大医院。特殊注意事项包括:大学生需校医院转诊后报销、异地就医需提前申请、慢性病需备案、大额费用可二次报销。此外,医保个人账户还有多种用途,但某些特定情况应避免使用医保卡。
2025-09-16 22:20:34
273
原创 图卷积神经网络GCN详解
神经网络中的权重可通过监督学习,或者无监督学习(也叫自监督学习)方式获得。对于监督学习任务,比如半监督学习节点分类,如已知部分节点类别,可构建损失函数。比如以v节点为例,将其输入图卷积神经网络得到嵌入,再加预测头预测是否发生欺诈,将预测结果与真实结果比对,算出如交叉熵损失函数(用于分类任务),目标是迭代优化神经网络权重,使交叉熵损失函数最小化,这是训练过程。若是无监督学习且没有节点标签,可借鉴。
2025-08-07 11:49:45
1690
原创 GNN图神经网络
摘要: 本文系统介绍了深度学习与图神经网络(GNN)的基础理论与应用。深度学习通过深度神经网络处理图像、文本等固定结构数据,而图神经网络则扩展至非结构化的图数据(如社交网络、分子结构),通过消息传递框架实现节点嵌入学习。GNN的核心是置换不变性,即输出与节点顺序无关,其多层计算图聚合邻居信息(如GCN、GAT)。应用涵盖节点分类、链接预测、分子生成等,但面临过平滑、动态图等挑战。文中强调理论与实践结合,推荐工具包(PyG、DGL)及学习资源(如《图神经网络基础前沿与应用》),为后续图深度学习奠定基础。
2025-08-07 10:52:44
584
原创 GCN模型的设计与训练(入门案例)
本文介绍了无卷积神经网络(GCN)的基本原理和实现方法。主要内容包括:1)基于Cora数据集建立图数据结构,该数据集包含2708篇论文的引用关系和143维特征向量;2)图卷积的核心操作,包括特征线性变换和邻接特征聚合,通过邻接矩阵实现节点间信息传递;3)构建两层GCN模型,在15%训练数据下实现81.4%的测试准确率,展示了GCN处理图结构数据的有效性。实验表明GCN能有效利用节点间的拓扑关系进行特征学习和分类。
2025-07-26 12:24:23
1080
原创 一文了解GCN(理论)
对于图,我们有以下特征定义:对于图, 为节点的集合, 为边的集合,对于每个节点 , 均有其特征 ,可以用矩阵 表示。其中 表示节点数,表示每个节点的特征数,也可以说是特征向量的维度。那么有什么东西来度量节点的邻居节点这个关系呢,学过图论的就会自然而然的想到邻接矩阵和拉普拉斯矩阵。举个简单的例子,对于下图中的左图(为了简单起见,举了无向图且边没有权重的例子)而言,它的度矩阵D,邻接矩阵A和拉普拉斯矩阵L分别如下图所示,度矩阵D只有对角线上有值,为对应节点的度,其余为0;邻接矩阵A。
2025-07-26 12:02:27
978
原创 LSTM入门案例(时间序列预测)| pytorch实现(可复现)
本文提出了一种基于LSTM的时间序列预测方法,用于预测未来30天的价格数据。方法首先对前113天训练数据进行归一化预处理,然后构建包含LSTM层和全连接层的回归模型。模型采用滚动预测策略,即每次使用历史数据预测下一天值,并将预测结果作为新输入继续预测。实验结果表明,该方法能够较好地捕捉时间序列模式,但预测精度仍有提升空间。文章详细介绍了数据预处理、模型构建、训练过程和预测方法,并讨论了归一化处理、隐藏状态传递等关键技术点。最后提出了增加网络复杂度、调整窗口大小等改进方向。
2025-07-15 15:27:01
1300
原创 L1正则化 VS L2正则化
正则化是机器学习中防止过拟合的重要技术,通过在损失函数中添加惩罚项来限制模型参数的增长。L1正则化(绝对值之和)会产生稀疏参数,适用于特征选择;L2正则化(平方和)会使参数均匀缩小,提高模型稳定性。这两种方法分别对应拉普拉斯分布和高斯分布的先验假设。正则化不仅适用于回归任务(如Lasso和Ridge回归),也可用于分类任务和神经网络(如Dropout)。其核心思想符合奥卡姆剃刀准则——选择最简单的有效模型。实际应用中需根据数据特点和问题需求选择正则化类型,并通过交叉验证调整正则化系数λ,以平衡模型复杂度和泛
2025-07-12 18:30:26
928
1
原创 Redis安装记录(Windows版本)
Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式、可选持久性的键值对(Key-Value)存储数据库,并提供多种语言的 API。Redis通常被称为数据结构服务器,因为值(value)可以是字符串(String)、哈希(Hash)、列表(list)、集合(sets)和有序集合(sorted sets)等类型。Redis是一个高性能的内存数据库,以其快速的数据读写速度和丰富的数据类型著称。
2025-07-08 19:02:49
960
原创 杀死你的直觉--贝叶斯公式
80%的学霸可以做对,想表达的是在已知一个人是学霸的条件下,做对这道题的概率是80%,即条件概率P(B|A)=80%。30%的普通人也可以做对,想表达的是在已知一个人不是学霸,即是普通人的条件下做对这道题的概率是30%,条件概率P(B|A拔)=30%。通常一个班级里有20%的人是学霸,剩下80%是普通人,该人是学霸的概率是20%,用字母A表示某个人是学霸的事件,该事件可简写为P(A)=20%。分析这道特别难的选择题,让真正的学霸去做,有80%的人可以做对,这里按经验做个假设,很符合学霸的特征。
2025-07-02 12:56:28
634
原创 HTTPS安全传输时采用的顶级阳谋
《HTTPS安全通信原理:从纸条传情到网络加密》摘要 本文通过生动的情书传递案例,形象阐释了HTTPS加密原理。首先揭示对称加密(共享密钥)的密钥传输风险,继而引入非对称加密(公钥/私钥)解决密钥交换问题。针对中间人攻击,提出数字签名和CA证书机构验证机制,最终形成HTTPS的三层保护体系:1)CA认证公钥真实性;2)非对称加密传输会话密钥;3)对称加密保障通信安全。文章将复杂的加密技术转化为生活场景,揭示了HTTPS如何在全球网络环境中构建可信通信通道,体现了密码学工程化的智慧结晶。
2025-07-01 21:01:11
1222
原创 (八)聚类
摘要:聚类是无监督学习的核心任务,旨在将数据分组为簇(cluster),可用于探索数据分布或作为分类预处理。聚类性能度量包括外部指标(与参考模型对比)和内部指标(簇内紧凑、簇间分离)。距离计算需满足度量性质(如欧式距离),但非度量距离(如相似度)也有应用。聚类方法主要分三类:原型聚类(如K均值,适合椭球形结构)、密度聚类(如DBSCAN,适合复杂形状)和层次聚类(如AGNES,提供多粒度结果)。聚类无绝对标准,需根据实际需求选择或设计算法,现有方法可能无法满足新标准,需结合问题调整。(150字)
2025-06-29 19:07:20
703
原创 (七)集成学习
摘要: 集成学习(Ensemble Learning)通过结合多个模型提升性能,分为同质(相同模型)和异质(不同模型)集成。其核心在于个体模型需“好而不同”,即高精度且多样性。集成方法分为两类: 序列化方法(如Boosting):模型按顺序生成,后续模型侧重修正前序错误(如Adaboost、XGBoost)。 并行化方法(如Bagging):模型独立生成,通过投票或平均结合(如随机森林)。 实际应用中,集成学习效果显著(如竞赛常见XGBoost、随机森林),尤其在深度学习中结合特征提取与集成进一步提升性能。
2025-06-29 19:03:56
687
原创 超参数调整
摘要:深度学习模型训练中的超参数调整是影响性能的关键环节。超参数分为网络参数、优化参数和正则化参数三类,其中学习率、批样本数量最为重要。调整方法包括手动调优(激活函数选择、BatchSize调整、学习率衰减策略)和自动调参(网格搜索、随机搜索、贝叶斯优化)。实践表明,合理设置初始学习率、采用适当正则化方法对模型效果影响显著。优化过程中需结合数据质量和模型表现综合分析,建议优先使用ReLU激活函数,BatchSize设为32/64的倍数。自动调参方法能有效提高效率,但理解各参数作用仍是优化基础。
2025-06-26 15:14:56
885
原创 开启GPU并行加速
本文介绍了使用PyTorch实现GPU加速的步骤:1)确认环境配置(Python 3.9+Torch 1.12.0+CUDA 11.3);2)将数据和模型加载到GPU,需安装支持GPU的PyTorch版本;3)通过设置device变量并添加.to(device)将数据和模型转移到GPU。示例代码展示了CPU和GPU两种版本的对比,以及如何检查变量和模型的存储位置。需要注意的是,不在同一设备(GPU/CPU)上的数据和模型无法进行计算。
2025-06-26 15:10:30
546
原创 深度学习正负样本比例的影响及其调节方法
本文探讨了深度学习中二分类问题的正负样本比例对模型性能的影响及调节方法。不平衡样本会导致模型偏向多数类,影响评估指标和收敛速度。文中介绍了两种主要调节方法:1)数据采样技术(上采样和下采样),并给出了Python代码示例;2)加权损失函数方法,演示了Keras实现方式。此外,还展示了使用混淆矩阵评估模型表现的可视化方法。文章强调合理调整样本比例对提升模型性能的重要性,建议结合数据采样和加权损失函数来应对不平衡问题,并定期优化训练策略。
2025-06-26 15:06:08
1681
原创 模型的训练与评估
本文介绍了机器学习中数据集划分与模型评估的关键方法。在数据集划分方面,探讨了训练集、验证集和测试集的划分原则,重点讲解了K-Fold交叉验证及其改进方法(分层和嵌套交叉验证),以解决数据量不足和样本不平衡问题。在模型评估方面,详细阐述了混淆矩阵、准确率、精确率、召回率和F1值等指标,并深入分析了ROC曲线与AUC值的计算原理及其在分类器性能评估中的应用。此外,还比较了ROC曲线与PR曲线的区别与联系,指出ROC曲线关注整体样本表现,而PR曲线更注重目标样本的识别效果。这些方法为机器学习模型的训练和评估提供了
2025-06-26 15:01:51
700
原创 (一)机器学习模型训练入门
机器学习模型训练入门摘要 机器学习基础概念 定义:通过经验改善系统性能,利用计算机系统分析数据 核心任务:智能数据分析,强调计算机算法处理 模型训练流程 输入:带标记的训练数据(如西瓜分类示例) 训练过程:使用学习算法从数据中产生模型 模型应用:处理新数据(unseen instance) 关键理论 PAC学习理论:概率近似正确框架 NFL定理:没有通用的最优算法 独立同分布假设:数据来自同一未知分布 核心问题 过拟合与欠拟合:U形性能曲线 评估方法:留出法、交叉验证、自助法 性能度量:查准率、查全率、F值
2025-06-26 14:54:51
660
原创 机器学习的分类(监督学习、非监督学习、半监督学习)
机器学习大致可分为三类:监督学习、非监督学习、半监督学习,下面我们就来分别介绍。机器学习是人工智能的核心领域之一,而根据学习过程中使用的标签数据的不同,机器学习主要分为三大类:监督学习(Supervised Learning)、(Semi-supervised Learning)和无监督学习(Unsupervised Learning)。
2025-06-24 21:53:47
1317
原创 数字签名&CA数字证书
其实CA也需要数字证书来证明自己的身份,因此会把这把公钥放在自己的数字证书里面,按照数字证书的生成原理,这份数字证书同样也需要另外一把私钥来进行签名,这就需要再加一层,也就是根CA。继续刚才的步骤,浏览器查看这份中间证书的颁发者,发现这里的公用名是User Trust RSA Certification Authority,此时就需要找找电脑里面有没有它的证书,最后成功找到这份根证书,并且提取里面的公钥来验证中间证书的签名。此外,若网站服务器的私钥泄露,并已向CA申请证书的吊销,浏览器如何得知此事呢?
2025-06-12 16:48:41
677
原创 http与https
先来观察这两张图,第一张访问域名中国铁路12306网站,谷歌浏览器提示不安全链接,第二张是中国铁路12306网站,浏览器显示安全,为什么会这样子呢?2017年1月发布的Chrome 56浏览器开始把收集密码或信用卡数据的HTTP页面标记为“不安全”,若用户使用2017年10月推出的Chrome 62,带有输入数据的HTTP页面和所有以无痕模式浏览的HTTP页面都会被标记为“不安全”,此外,苹果公司强制所有iOS App在2017年1月1日前使用HTTPS加密。
2025-06-12 15:47:38
885
原创 你管这玩意叫网络?网络图解
因此,可能会显示旧的IP地址。新设备想要租用IP地址,但不知道谁是DHCP服务器,因此从0.0.0.0发送,并用255.255.255.255进行广播,MAC地址为新设备的地址作为原地址,并使用MAC的广播地址作为目标地址。,我们把电脑的网线分别插入交换机的端口上, 两台设备第一次进行通信时,交换机会通过ARP广播给所有设备,找到目标MAC地址后,交换机会将这次通信的两台设备的MAC地址记录进MAC地址表中,以后再通信时交换机会先查看MAC地址表,如果有目标MAC信息就会直接发送给对应设备;
2025-06-12 15:23:14
703
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅