斯坦福大学机器学习中文笔记被公开,让无数自学党留下了感动泪水 拿走不谢

机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演译,所有内容均为全彩

在过去的十年中,机器学习帮助我们自动驾驶汽车,有效的语音识别,有效的网络搜索,并极大地提高了人类基因组的认识。

机器学习是当今非常普遍,你可能会使用这一天几十倍而不自知。很多研究者也认为这是最好的人工智能的取得方式。

将学习最有效的机器学习技术,并获得实践,让它们为自己的工作,更重要的是,你会不仅得到理论基础的学习,而且获得那些需要快速和强大的应用技术解决问题的实用技术。最后,你会学到一些硅谷利用机器学习和人工智能的最佳实践创新。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
斯坦福大学 2014机器学习教程中文笔记 Machine Learning(机器学习 机器学习 )是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新是研究计算机怎样模拟或实现人类的 学习行为,以获取新知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心知识或技能,重新组织已有的结构使之不断改善自身性。它是 人工智核心使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 使计算机具有智能的根本途径,其应用遍及人工各个领域它主要归纳、综合而 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车有效语音识别网 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍你可能会使用这一 天几十倍而不自知。很多研究者也认为这是最好的 人工智能天几十倍而不自知。很多研究者也认为这是最好的 人工智能天几十倍而不自知。很多研究者也认为这是最好的 人工智能天几十倍而不自知。很多研究者也认为这是最好的 人工智能天几十倍而不自知。很多研究者也认为这是最好的 人工智能天几十倍而不自知。很多研究者也认为这是最好的 人工智能天几十倍而不自知。很多研究者也认为这是最好的 人工智能天几十倍而不自知。很多研究者也认为这是最好的 人工智能天几十倍而不自知。很多研究者也认为这是最好的 人工智能天几十倍而不自知。很多研究者也认为这是最好的 人工智能天几十倍而不自知。很多研究者也认为这是最好的 人工智能天几十倍而不自知。很多研究者也认为这是最好的 人工智能取得方式 取得方式 。在本课中,您将学 。在本课中,您将学 。在本课中,您将学 。在本课中,您将学 。在本课中,您将学 。在本课中,您将学 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 习最有效的机器学技术,并获得实践让它们为自己工作。更重 要的是,你会不仅得到 要的是,你会不仅得到 要的是,你会不仅得到 要的是,你会不仅得到 要的是,你会不仅得到 要的是,你会不仅得到 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 理论基础的学习,而且获得那些需要快速和强大应用技术解决问题实。最后你 会学到一些硅谷利用机器习和人工智能的最佳实践创新。 会学到一些硅谷利用机器习和人工智能的最佳实践创新。 会学到一些硅谷利用机器习和人工智能的最佳实践创新。 会学到一些硅谷利用机器习和人工智能的最佳实践创新。 会学到一些硅谷利用机器习和人工智能的最佳实践创新。 会学到一些硅谷利用机器习和人工智能的最佳实践创新。 会学到一些硅谷利用机器习和人工智能的最佳实践创新。 会学到一些硅谷利用机器习和人工智能的最佳实践创新。 会学到一些硅谷利用机器习和人工智能的最佳实践创新。 会学到一些硅谷利用机器习和人工智能的最佳实践创新。 会学到一些硅谷利用机器习和人工智能的最佳实践创新。 会学到一些硅谷利用机器习和人工智能的最佳实践创新。 本课程提供了一个广泛的 介绍机器学习、数据挖掘统计模式识别本课程提供了一个广泛的 介绍机器学习、数据挖掘统计模式识别本课程提供了一个广泛的 介绍机器学习、数据挖掘统计模式识别本课程提供了一个广泛的 介绍机器学习、数据挖掘统计模式识别本课程提供了一个广泛的 介绍机器学习、数据挖掘统计模式识别本课程提供了一个广泛的 介绍机器学习、数据挖掘统计模式识别本课程提供了一个广泛的 介绍机器学习、数据挖掘统计模式识别本课程提供了一个广泛的 介绍机器学习、数据挖掘统计模式识别本课程提供了一个广泛的 介绍机器学习、数据挖掘统计模式识别本课程提供了一个广泛的 介绍机器学习、数据挖掘统计模式识别本课程提供了一个广泛的 介绍机器学习、数据挖掘统计模式识别课程 。主题包括: 。主题包括: 。主题包括: (一)监督学习参数 (一)监督学习参数 (一)监督学习参数 (一)监督学习参数 (一)监督学习参数 (一)监督学习参数 (一)监督学习参数 /非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 非参数算法,支持向量机核函神经网络)。(二无监督学习 (聚类,降维推荐系统深入学习)。三在机器的最佳实践偏差 (聚类,降维推荐系统深入学习)。三在机器的最佳实践偏差 (聚类,降维推荐系统深入学习)。三在机器的最佳实践偏差 (聚类,降维推荐系统深入学习)。三在机器的最佳实践偏差 /方差理 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 论;在机器学习人工智能创新过程)。本课还将使用大量的案例研究,您如何 运用学习算法构建智能机器人(感知,控制) 运用学习算法构建智能机器人(感知,控制) 运用学习算法构建智能机器人(感知,控制) 运用学习算法构建智能机器人(感知,控制) 运用学习算法构建智能机器人(感知,控制) 运用学习算法构建智能机器人(感知,控制) 运用学习算法构建智能机器人(感知,控制) 运用学习算法构建智能机器人(感知,控制) 运用学习算法构建智能机器人(感知,控制) 运用学习算法构建智能机器人(感知,控制) 运用学习算法构建智能机器人(感知,控制) ,文本的理解( ,文本的理解( ,文本的理解( ,文本的理解( ,文本的理解( Web搜索,反垃圾邮件),计 搜索,反垃圾邮件),计 搜索,反垃圾邮件),计 搜索,反垃圾邮件),计 搜索,反垃圾邮件),计 搜索,反垃圾邮件),计 搜索,反垃圾邮件),计 搜索,反垃圾邮件),计 算机视觉,医疗信息音频数据挖掘和其他领域。 算机视觉,医疗信息音频数据挖掘和其他领域。 算机视觉,医疗信息音频数据挖掘和其他领域。 算机视觉,医疗信息音频数据挖掘和其他领域。 算机视觉,医疗信息音频数据挖掘和其他领域。 算机视觉,医疗信息音频数据挖掘和其他领域。 算机视觉,医疗信息音频数据挖掘和其他领域。 算机视觉,医疗信息音频数据挖掘和其他领域。 算机视觉,医疗信息音频数据挖掘和其他领域。 算机视觉,医疗信息音频数据挖掘和其他领域。 算机视觉,医疗信息音频数据挖掘和其他领域。 本课程 需要 10周共 18节课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每课 ,相对以前的机器学习视频这个更加清晰而且每都有 ppt课件,推荐学习。 课件,推荐学习。 课件,推荐学习。 课件,推荐学习。 课件,推荐学习。 本人 是中国海洋大学 是中国海洋大学 是中国海洋大学 是中国海洋大学 是中国海洋大学 2014级博士生, 博士生, 博士生, 2014年刚开始接触机器学习,我下载了这次课程 刚开始接触机器学习,我下载了这次课程 刚开始接触机器学习,我下载了这次课程 刚开始接触机器学习,我下载了这次课程 刚开始接触机器学习,我下载了这次课程 刚开始接触机器学习,我下载了这次课程 刚开始接触机器学习,我下载了这次课程 刚开始接触机器学习,我下载了这次课程 刚开始接触机器学习,我下载了这次课程 的所有视频和 的所有视频和 的所有视频和 课件 给大家分享。中英文 给大家分享。中英文 给大家分享。中英文 给大家分享。中英文 给大家分享。中英文 字幕 来自于 来自于 https://www.coursera.org/course/ml, 主要 是教育 无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并无边界字幕组翻译 ,本人把中英文进行合并剩余 字幕,对视频进行 字幕,对视频进行 字幕,对视频进行 字幕,对视频进行 字幕,对视频进行 封装,归类并翻译了课程目录做好 封装,归类并翻译了课程目录做好 封装,归类并翻译了课程目录做好 封装,归类并翻译了课程目录做好 封装,归类并翻译了课程目录做好 封装,归类并翻译了课程目录做好 封装,归类并翻译了课程目录做好 封装,归类并翻译了课程目录做好 封装,归类并翻译了课程目录做好 封装,归类并翻译了课程目录做好 课程 索引文件,希望对大家有所帮助。部分 索引文件,希望对大家有所帮助。部分 索引文件,希望对大家有所帮助。部分 索引文件,希望对大家有所帮助。部分 索引文件,希望对大家有所帮助。部分 索引文件,希望对大家有所帮助。部分 索引文件,希望对大家有所帮助。部分 索引文件,希望对大家有所帮助。部分 索引文件,希望对大家有所帮助。部分 索引文件,希望对大家有所帮助。部分 视频 中文 字幕 由中国海洋大学的博士生 中国海洋大学的博士生 中国海洋大学的博士生 中国海洋大学的博士生 中国海洋大学的博士生 翻译 。视频 已经 翻译 完毕 ,如果下载了视频 如果下载了视频 如果下载了视频 如果下载了视频 ,可以直接在文档 可以直接在文档 可以直接在文档 中打开视频,内嵌英文字幕 中打开视频,内嵌英文字幕 中打开视频,内嵌英文字幕 中打开视频,内嵌英文字幕 中打开视频,内嵌英文字幕 中打开视频,内嵌英文字幕 ,推荐 ,推荐 使用 potplayer。 这篇 中文笔记 中文笔记 中文笔记 ,主要是根据视频内容 主要是根据视频内容 主要是根据视频内容 主要是根据视频内容 和中文字幕以及 中文字幕以及 中文字幕以及 中文字幕以及 ppt来制作 来制作 ,部分 来源于网络 来源于网络 ,如 “小人 小人 _V”的笔记 ,并持续更新 并持续更新 并持续更新 。 视频 下载 链接: 链接: http://pan.baidu.com/s/1pKLATJl 密码: xn4w 本人水平 本人水平 有限,如 有限,如 有限,如 有公式 有公式 、算法错误,请及时指出发邮件给我 算法错误,请及时指出发邮件给我 算法错误,请及时指出发邮件给我 算法错误,请及时指出发邮件给我 算法错误,请及时指出发邮件给我 算法错误,请及时指出发邮件给我 算法错误,请及时指出发邮件给我 算法错误,请及时指出发邮件给我 ,也 可以加我 可以加我 可以加我 qq。 今日 发现 这个 笔记被下载超过 笔记被下载超过 笔记被下载超过 笔记被下载超过 3万次, 应该说 应该说 这个 笔记有点用, 笔记有点用, 笔记有点用, 我发现以前一些翻译小 发现以前一些翻译小 发现以前一些翻译小 发现以前一些翻译小 错误,进行 错误,进行 了修改,以免误导初学者。 修改,以免误导初学者。 修改,以免误导初学者。 修改,以免误导初学者。 修改,以免误导初学者。 修改,以免误导初学者。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值