显著性检测分类(数据集和评估指标总结)

一:RGB显著性检测

常用数据集

其中有DUTS,ECSSD,DUT-OMRON,PASCAL-S,HKU-IS,SOD,SOC,MSRA-B

(1)DUTS:DUTS-TR(训练集):10553张,DUTS-TE(测试集):5019张

        特点:复杂背景、高质量标注,深度学习模型常用数据集

(2)ECSSD:1000张

        特点:片内容丰富,包含多个显著目标

(3)DUT-OMRON:5168张

        特点:场景复杂,显著目标较小且数量多,包含了更多复杂背景和遮挡,目标位置更加多样化。

(4)PASCAL-S:850张

        特点:高质量的显著性标注,包含物体级别的显著目标

(5)HKU-IS:4447张

        特点:目标尺寸变化大,前景和背景对比度较强。

(6)SOD:300张

        特点:专注于多目标场景, 且标注了精确的边缘掩码。

(7) SOC:6000张

        特点:强调“背景干扰”和“目标遮挡”的场景,难度非常高

(8)MSRA-B:5000张

        特点:最早的显著性数据集之一,目标清晰且显著。

常用评估指标

MAE,F-measure,S-measure,E-measure评估指标。

(1)MAE(平均绝对误差)

物理意义:衡量的是预测显著性图S与真实标签G之间的像素级误差,MAE的值越小,代表模型预测的显著区域越准确。

(2)F-measure (F-度量)

F-measure在RGB显著性检测中的三种版本:

(1):直接在显著性图上选择一个固定的二值化阈值(通常为0.5)来计算Precision和Recall。

物理意义:综合了精确度和召回率,平衡了显著性检测中的“检测到目标区域”和“抑制背景区域”能力。

存在的缺陷:(1)受阈值选择的影响非常大,如果固定阈值选择不当,评估结果不准确

                      (2)不能反映模型在不同阈值下的整体性能

(2):遍历所有阈值 θ∈[0,255],选择最优阈值下的F-measure。解决了固定阈值评估不公平的问题。

核心思想:搜索最有阈值,反映显著性图的上限性能,避免了人为选择阈值的影响,能够反映模型的全局性能。

(3):解决了前景-背景不平衡问题,在显著性检测任务中,前景通常较小,背景区域占较大,传统F-measure容易被背景主导。

核心思想:给显著目标区域更高的权重,降低背景区域的影响,对边缘区域和细节目标更敏感,在RGB-D SOD、RGB-T SOD等多模态任务中,几乎是标配指标。

(3)S-measure(结构度量)

在传统的 F-measure 中,前景区域 (salient object)背景区域 (background) 受到二值化阈值的影响,评估不够稳定。而 S-measure 是一种结构相似性度量 (Structural Similarity Metric),直接衡量预测显著图Ground Truth结构层面的匹配程度。

(4)E-measure(增强度量)

E-measure = 全局信息 (global) + 局部对齐 (local) 的结合度量。

二:RGB-D显著性检测 (RGB-D SOD)

常用数据集

NJU2K,NLPR,SIP,STERE,DES,RGBD135,ReDWeb-S,COME

(1)NJU2K:1985张

特点:最早提出的RGB-D SOD数据集,场景多样性极高,被大量先进的方法使用。

(2)NLPR:1000张

特点:高质量双目深度图,小规模但高质量,适合模型鲁棒性评估

(3)SIP:929张

特点:强调行人显著性检测,移动设备拍摄,背景复杂,MobileSal论文核心测试集

(4)STERE:1000张

特点:经典立体匹配深度图,室内场景为主,辅助评估模型性能

(5)DES:135张

特点:最早的RGB-D SOD数据集之一,常用于模型快速验证,适合小型模型调试或迁移学习任务

(6)RGBD135:135张

特点:适合小型显著性检测任务,强调物体级显著性,场景相对简单,常用于模型鲁棒性评估

(7)ReDWeb-S:3600张

特点:使用深度估计算法生成深度图,用于深度感知和显著性结合任务

(8)COME:2900张

特点:当前RGB-D SOD领域最大规模数据集,深度图质量高,且包含真实深度和合成深度两部分。

常用评估指标

有:有MAE,F-measure,S-measure,E-measure评估指标。见上面

三:RGB-T显著性检测 (RGB-T SOD)

常用数据集

VT821,VT1000,VT5000(最新最全),VT2000

(1)VT821:821张

特点:场景类型: 室内 + 室外,深度来源: 红外热成像相机,GT质量: 精细像素级,RGB-T SOD领域最早且最常用的数据集。

(2)VT1000:1000张

特点:场景类型: 复杂环境 + 昼夜场景,热图质量: 高质量红外图像,GT质量: 像素级标注,MobileSal论文中的核心测试集之一。

(3)VT5000 :5000张

特点:场景类型: 多种场景 (低光、雨天、遮挡、背景干扰等),热图来源: 双光谱传感器,GT质量: 像素级标注,RGB-T SOD领域目前最大规模的数据集。

(4)VT2000:2000张

特点:场景类型: 动态目标跟踪 + 晚间场景,热图质量: 高清红外热成像,GT质量: 精细像素级

常用评估指标

有:MAE,F-measure,S-measure,E-measure评估指标。见上面

四:Co-SOD协同显著性检测

常用数据集

有:CoSal2015,CoSOD3k,CoCA,Cosal150

(1)CoSal2015:2015张

特点:场景类型: 自然场景 + 室内/室外场景,GT质量: 精细像素级,Co-SOD领域最早且最广泛使用的数据集

(2)CoSOD3k:3160张

特点:场景类型: 复杂多物体 + 光照变化 + 背景干扰,GT质量: 精细像素级标注,目前Co-SOD领域最受欢迎的数据集 

(3)CoCA:1295张

特点:场景类型: 极端挑战场景 (遮挡、背景干扰、目标变化等),GT质量: 像素级标注,用于评估Co-SOD模型的鲁棒性

(4)Cosal150:150张

特点:场景类型: 简单场景 (单一物体),GT质量: 粗标注,适合小规模验证

常用评估指标

有:MAE,F-measure,S-measure,E-measure评估指标。见上面C-measure(协同一致性度量 (Co-SOD独有指标))

C-measure(协同一致性度量):衡量同一组图像之间的显著性一致性

作用:衡量Co-SOD模型是否能够在不同图像中检测除共享的显著目标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值