自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

一伦明悦的博客

欢迎来到技术探索的奇幻世界:(1)C++ 工匠之路:我将分享我的C++之旅,从基础到高级,带你领略这门古老而又充满活力的语言的魅力。(2)Python 指尖舞者: 让我们一起跳动Python的乐曲,探索其灵活性和强大之处,将想象力化为代码的力量。

  • 博客(88)
  • 收藏
  • 关注

原创 [机器学习聚类算法实战-1] | Scikit-Learn工具包进阶指南:机器学习聚类算法之层次聚类、特征集聚、均值移位聚类、k-均值聚类实战分析

机器学习中的聚类分析是一种无监督学习方法,旨在将数据点划分为相似的组或簇,使得同一组内的数据点彼此相似,而不同组之间的数据点则相对较不相似。聚类分析可以帮助我们理解数据的内在结构,发现数据中隐藏的模式,并将数据进行自然的分组,从而为进一步分析或决策提供基础。K-Means 聚类:将数据点分成预先指定的 k 个簇,每个簇具有最小化簇内平方误差的中心点。K-Means 是一种迭代算法,通过不断更新簇中心点来优化聚类结果。层次聚类:逐步将数据点合并到不断增长的聚类中,形成层次结构。

2024-05-16 18:54:59 1861 64

原创 【机器学习-06】Scikit-Learn机器学习工具包进阶指南:机器学习分类模型实战与数据可视化分析

机器学习分类模型是一种通过学习数据集中的特征与标签之间的关系,从而对新的数据进行分类的方法。其基本思想是通过训练数据来构建一个模型,然后利用这个模型对新的数据进行分类。常见的分类模型包括逻辑回归、支持向量机、决策树、随机森林、K近邻等。机器学习分类模型是一种通过学习数据的特征与它们所属类别之间的关系,从而对新的未知数据进行分类的算法。这些模型可以用于解决各种分类问题,如图像识别、文本分类、医学诊断等。工作原理数据准备:首先,需要准备带有标签的训练数据,其中包含输入特征(即描述数据的属性)和相应的类别标签。

2024-05-13 16:41:03 1363 27

原创 [机器学习-03] Scikit-Learn机器学习工具包学习指南:主要功能与用法解析

Scikit-Learn是一个用于机器学习的Python库,它提供了各种用于数据预处理、模型选择、评估和部署的工具和算法。这个库的设计重点是简单、高效和可扩展性。(1)Scikit-Learn的简单易用性使得用户可以轻松地使用各种机器学习算法,无需深入了解算法的底层实现。其一致的API设计使得算法的调用和使用变得简单直观。这种设计思想使得Scikit-Learn成为许多数据科学从业者和研究人员的首选工具之一。

2024-05-10 20:59:46 1435 39

原创 [机器学习-02] 数据可视化神器:Matplotlib和Seaborn工具包实战图形大全

综合上述分析,Matplotlib 是一个功能强大但比较底层的绘图库,适合绘制各种类型的图形和进行定制化操作;而 Seaborn 则是一个专注于统计数据可视化的高阶库,提供了更方便的统计图表创建和美化功能。当然,这里仅仅只是一部分常用的可视化分析图像,还可以绘制各种复杂的图像,如果需要,可以在官网查看。欢迎大家多多支持!

2024-05-06 15:14:25 1821 11

原创 [机器学习-01]一文了解|机器学习简介、工具选择和Python包基础应用

通过本篇基本可以了解关于机器学习需要完成的所有前期准备工作,包括机器学习基础知识,机器学习工具选择,Python工具包基本使用方法等。机器学习是一种人工智能(AI)的分支,旨在让计算机系统自动通过数据学习并改进。它能够让机器通过分析大量数据来做出决策,而无需编程指定特定任务的解决方案。机器学习的核心思想是通过训练模型来使计算机系统能够自动进行决策,并不断地通过数据来改进自身的性能。

2024-05-03 19:23:13 1606 6

原创 [C++ QT项目实战-01]----C++ QT系统实现多线程通信

双线程可以并行执行,可以更充分地利用多核处理器的资源,从而提高系统的整体性能。通过将一些耗时的操作放在单独的线程中执行,可以避免阻塞主线程,提高程序的响应速度和用户体验。双线程可以同时处理不同的任务,增加系统的并发性,使系统更具有高效性和灵活性。通过将复杂任务拆分成多个线程来执行,可以更容易地管理和维护代码,提高代码的可读性和可维护性。通过将不同功能模块分别放在不同的线程中执行,可以避免由于一个线程的错误导致整个系统崩溃的情况,提高软件的稳定性。

2024-04-26 16:58:28 1906 7

原创 一文了解 | 基于windows下ODBC驱动程序,实现C++ QT调用读取SQL Server2014数据库中的数据

上述完成了建立一个可以“一劳永逸”的数据源,这种方法对开发系统时所需的与数据库连接等功能实现提供了更加实用的思路。这也是对上一篇建立数据表之后,如何实现读取操作进行的后续说明,如果有问题,欢迎在评论区说明,后续还会更新其他内容,希望可以与各位大咖交流,互相学习。

2024-04-19 17:47:54 1023 3

原创 一文解决 | SQL Server2014数据库建立数据表和数据导入

SQL Server数据库具有多方面的优点,主要包括以下几点:1、可靠性高SQL Server数据库是由微软开发和维护的成熟产品,经过了长期的市场验证和实际应用检验,具有高度的稳定性和可靠性。2、性能优越SQL Server在性能方面有着出色的表现,能够处理大规模数据和高并发访问。它采用了优化的查询处理引擎和索引机制,支持多种查询优化技术,如查询优化器、执行计划缓存等,从而提高了查询的执行效率和系统的整体性能。3、安全性强。

2024-04-18 21:55:40 1657 7

原创 一文了解 | FreeRTOS移植到stm32流程

1、RTOS 简介实时操作系统(RTOS)是一种专为实时应用程序设计的操作系统,它能够确保任务在特定的时间约束内完成,并提供可预测的响应时间。RTOS 通常用于嵌入式系统,其中任务的时间敏感性非常重要。实时操作系统分为硬实时和软实时两种类型,硬实时要求任务必须在规定的时间内完成,而软实时则允许偶尔的任务延迟。通过上述步骤之后,便可以使用实时操作系统(FreeRTOS)实现多任务运行,下面代码适用于实现LED灯循环执行的两个任务,可以将程序烧录到开发板查看效果。

2024-04-18 16:41:52 1052 5

原创 一文读懂 | STM32的启动配置,以及从启动到执行main函数的执行步骤

STM32基本外设众多,学习需要花费很长时间。这里首先需要明白的是STM32的启动过程,首先将介绍内存分区以及STM32的3中启动配置,这里并未使用代码详细解释,更多的是用于嵌入式方向面试需要。

2023-10-30 16:32:34 1284

原创 一文解决,anaconda创建虚拟环境,python模型打包,c++程序调用py文件,调用程序编写全流程。

C++程序调用py文件,python模型打包

2023-10-28 20:40:22 1107 5

原创 一文搞懂,指针常量与常量指针、指针数组与数组指针以及指针函数与函数指针

指针常量本质是一个常量,地址是一个常量,地址不可改(&指向不可改),值可以改。常量指针本质是一个指针,值是一个常量,值不可改,地址可以改(&指向可以改)。指针函数本质是一个函数,但是返回值是指针类型,使用时,必须定义同类型指针变量接收。函数指针本质是一个指针,声明一个函数指针,可以为其赋给其他函数地址。使用(*fun)调用函数指针数组本质是一个数组,数组中的元素是指针,占有多个指针的存储空间。数组指针本质是一个指针,指针管理数组的元素,占有内存中一个指针的存储空间。

2023-09-01 14:56:34 956 4

原创 【C++提高编程-11】----C++ STL常用集合算法

在C++ STL(标准模板库)中,有几个常用的集合算法可以用来操作集合(如std::set或std::unordered_set)

2024-06-21 15:12:54 706 3

原创 【Python机器学习实战】 | 基于支持向量机(Support Vector Machine, SVM)进行分类和回归任务分析

svm.SVC是Scikit-learn中用于支持向量机(Support Vector Machine, SVM)分类任务的类。具体来说,svm.SVC实现了基于支持向量的分类器,其核心是在特征空间中找到最佳的超平面来区分不同类别的数据点。

2024-06-21 11:00:07 710 1

原创 【Python机器学习实战】 | 基于PCA主成分分析技术读入空气质量监测数据进行数据预处理并计算空气质量综合评测结果

主成分分析(Principal Component Analysis, PCA)是一种常用的机器学习和数据分析技术,用于降低数据维度、识别数据中的模式、发现变量之间的关系等。

2024-06-20 16:41:31 554 4

原创 【Python机器学习实战】 | 基于线性回归以及支持向量机对汽车MPG与自重进行回归预测

线性回归适用于预测连续数值,而支持向量机适用于处理分类问题,并且能够处理非线性分类任务。选择适当的算法取决于数据类型、任务需求和模型复杂度。

2024-06-20 10:22:57 574 1

原创 【Python机器学习实战】 | 基于K近邻算法和一般线性回归算法对电视剧播放数据进行回归预测

K近邻(K-Nearest Neighbors,简称KNN)算法是一种基本的分类和回归方法,它可以用于解决分类和回归问题。

2024-06-20 09:30:44 1737 7

原创 【Python机器学习实战】 | Lasso回归和弹性网回归详细分析研究

综上所述,Lasso回归和弹性网回归是两种常用的线性回归方法,通过正则化惩罚的引入,能够在保持模型预测准确性的同时,实现特征选择和模型复杂度控制,适用于处理各种类型的数据集和回归问题。

2024-06-19 19:48:07 1020 5

原创 【C++提高编程-10】----C++ STL常用拷贝和替换算法

STL(Standard Template Library)是C++标准库的一部分,提供了丰富的数据结构和算法,用于处理数据和实现常见的计算任务。STL中的算法分为几类,包括遍历算法、修改算法、排序算法、查找算法、数值算法等,每类算法都有其特定的应用场景和功能。

2024-06-19 11:08:23 599

原创 【Python机器学习实战】 | 基于空气质量监测数据,采用多层神经网络预测PM2.5浓度

多层网络是一种深度学习模型,也称为深度神经网络(Deep Neural Network, DNN)。它由多个神经网络层(或称为隐藏层)组成,每一层包含多个神经元(或节点),用于逐层提取和学习输入数据的特征表示。

2024-06-19 10:45:09 635

原创 【Python机器学习实战】 | 基于决策树的药物研究分类预测

决策树模型以其简单直观的特性和广泛的适用性,在许多领域都得到了有效的应用。对于复杂的数据集或者需要更高预测精度的问题,可以通过集成学习方法(如随机森林、梯度提升树)来进一步改进决策树模型的性能。

2024-06-18 10:52:24 1538 17

原创 【Python机器学习实战】----基于AdaBoost分类树模型、梯度提升分类树模型、Bagging分类树模型以及随机森林分类模型对空气质量等级进行预测

这些模型各有特点,选择适当的模型取决于数据特性、问题复杂度以及对预测性能和解释性的需求。在实际应用中,通常需要通过交叉验证等方法来评估和比较它们的性能。

2024-06-18 08:05:29 775 3

原创 【C++提高编程-09】----C++ STL之常用排序算法

STL(Standard Template Library)是C++标准库的一部分,提供了丰富的数据结构和算法,用于处理数据和实现常见的计算任务。STL中的算法分为几类,包括遍历算法、修改算法、排序算法、查找算法、数值算法等,每类算法都有其特定的应用场景和功能。

2024-06-17 11:22:39 1109 4

原创 【C++提高编程-08】----C++ STL之常用查找算法

STL(Standard Template Library)是C++标准库的一部分,提供了丰富的数据结构和算法,用于处理数据和实现常见的计算任务。STL中的算法分为几类,包括遍历算法、修改算法、排序算法、查找算法、数值算法等,每类算法都有其特定的应用场景和功能。

2024-06-17 10:58:36 960

原创 【C++提高编程-07】----C++ STL常用算法之遍历算法和算术生成算法

STL(Standard Template Library)是C++标准库的一部分,提供了丰富的数据结构和算法,用于处理数据和实现常见的计算任务。STL中的算法分为几类,包括遍历算法、修改算法、排序算法、查找算法、数值算法等,每类算法都有其特定的应用场景和功能。

2024-06-16 16:48:48 767 12

原创 【C++提高编程-06】----C++之STL-函数对象、谓词、仿函数

在C++中,STL(Standard Template Library)中的函数对象(function object)、谓词(predicate)和仿函数(functor)是关键概念,用于实现通用算法的灵活性和可定制性。

2024-06-16 11:30:12 673 1

原创 【C++提高编程-05】----C++之Deque容器实战

Deque(双端队列)是C++ STL中的一种序列容器

2024-06-15 16:46:40 1174 8

原创 【Matlab编程学习】 | matlab语言编程基础:常用图形绘制基础学习

Matlab 是一种强大的数值计算和技术计算环境,广泛应用于科学和工程领域。它提供了丰富的功能和工具,用于数据分析、可视化、算法开发、应用部署等多个方面。

2024-06-15 15:38:37 1592 50

原创 【机器学习-09】 | Scikit-Learn工具包进阶指南:Scikit-Learn工具包之高斯混合sklearn.mixture模块研究

高斯混合模型(Gaussian Mixture Model,简称GMM)是一种概率性的聚类算法,它假设数据是由若干个高斯分布混合而成的。每个高斯分布对应一个聚类,而GMM的目标就是找出这些高斯分布的参数以及每个样本属于这些聚类的概率。

2024-06-05 19:44:39 1832 7

原创 【Python编程实战】基于Python语言实现学生信息管理系统

Python是一种高级编程语言,以其简洁易读的语法而闻名。它支持面向对象、命令式、函数式和过程式编程范式。

2024-05-28 21:38:25 2258 33

原创 【STM32单片机】----实现LED灯闪烁实战

STM32是一系列由STMicroelectronics开发的32位ARM Cortex-M微控制器系列,广泛应用于嵌入式系统中。它们提供了丰富的外设和性能,适用于各种应用领域,包括工业控制、汽车、消费电子等。STM32系列有多个产品系列,每个系列针对不同的应用需求提供了多种型号和配置选项。要对STM32有一个全面的总结,可以涵盖其主要特点、产品系列、应用领域、开发工具和生态系统等方面的信息。

2024-05-26 17:29:46 1125 37

原创 【C++提高编程-04】----C++之Vector容器实战

vector容器是 C++ 中常用的动态数组容器,具有灵活性和高效性。它支持动态增长和缩减、高效的尾部插入和删除操作,以及随机访问元素等功能。同时,通过swap方法可以方便地交换容器内容,用于优化内存使用。在 C++ 编程中,vector是处理动态数组数据的首选容器之一。

2024-05-25 14:14:37 582 14

原创 【机器学习聚类算法实战-5】机器学习聚类算法之DBSCAN聚类、K均值聚类算法、分层聚类和不同度量的聚集聚类实例分析

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法是一种基于密度的聚类算法,能够有效地发现任意形状的聚类,并能够处理噪声数据。

2024-05-25 09:03:31 958 4

原创 【机器学习-08】 | Scikit-Learn工具包进阶指南:Scikit-Learn工具包之决策树算法实战分析

决策树是一种基于树结构的分类和回归方法,通过一系列的决策节点和叶节点来对数据进行分类或预测。决策树的每个非叶节点表示一个特征属性测试,每个分支代表测试结果的一个输出,每个叶节点代表一个类别或回归。

2024-05-24 15:55:54 1698 13

原创 【C++提高编程-03】----C++之STL常用容器基础实战

STL(Standard Template Library,标准模板库)是 C++ 标准库的一部分,提供了一组通用的模板类和函数,用于实现常见的数据结构和算法。

2024-05-24 13:40:50 669 3

原创 【机器学习-07】 | Scikit-Learn工具包进阶指南:Scikit-Learn工具包之自带数据集示例分析

sklearn.datasets是scikit-learn库中用于加载示例数据集的模块。它包含了一些常用的数据集,可以用来进行机器学习算法的练习和测试。这些数据集通常被用来探索、理解和验证机器学习算法的性能。

2024-05-24 12:31:14 1046 2

原创 【C++提高编程-02】----C++泛型编程之类模板实战

在C++中,泛型编程是一种编程范式,其核心思想是编写与数据类型无关的通用代码,以实现对不同数据类型的操作和算法。它主要利用的技术是模板。

2024-05-22 19:45:22 1485 22

原创 【机器学习-近邻算法-02】 | Scikit-Learn工具包进阶指南:机器学习sklearn.neighbors模块之核密度估计、缓存最近邻、邻域成分分析以及局部离群因子算法

sklearn.neighbors是scikit-learn库中用于实现K近邻算法的模块。它提供了用于分类、回归、密度估计等任务的K近邻算法的实现。该模块包含了多种K近邻算法的实现,如基本的KNN分类器、回归器、最近邻图等。你可以使用该模块来构建K近邻模型,并对数据进行分类、回归等任务。

2024-05-22 17:17:53 1076 10

原创 【机器学习-k近邻算法-01】 | Scikit-Learn工具包进阶指南:机器学习sklearn.neighbors模块之k近邻算法实战

sklearn.neighbors是scikit-learn库中用于实现K近邻算法的模块。它提供了用于分类、回归、密度估计等任务的K近邻算法的实现。该模块包含了多种K近邻算法的实现,如基本的KNN分类器、回归器、最近邻图等。你可以使用该模块来构建K近邻模型,并对数据进行分类、回归等任务。

2024-05-22 11:15:07 1066 3

原创 【C++提高编程-01】----C++之函数模板实战

在C++中,泛型编程是一种编程范式,其核心思想是编写与数据类型无关的通用代码,以实现对不同数据类型的操作和算法。它主要利用的技术是模板。

2024-05-21 21:32:22 584 9

基于PCA主成分分析技术读入空气质量监测数据进行数据预处理.zip

基于PCA主成分分析技术读入空气质量监测数据进行数据预处理.zip

2024-06-20

基于函数np.linalg.svd()对当前脸部灰度矩阵X进行奇异值分解.zip

基于函数np.linalg.svd()对当前脸部灰度矩阵X进行奇异值分解.zip

2024-06-20

【matlab画图】资源.zip

常用mtlab绘图资源,包括1. 线图 (Plot)2. 美化后的散点图 (Scatter Plot)3、美化后的条形图 (Bar Chart)4、美化后的饼图 (Pie Chart)5、美化后的3D曲面图 (3D Surface Plot)6、美化后的热图 (Heatmap)7、美化后的等高线图 (Contour Plot)

2024-06-20

手写数字识别python.zip

手写数字识别python

2024-06-20

基于线性回归以及支持向量机对汽车MPG与自重进行回归预测.zip

基于线性回归以及支持向量机对汽车MPG与自重进行回归预测.zip

2024-06-19

基于AdaBoost分类树模型、梯度提升分类树模型、Bagging分类树模型以及随机森林分类模型对空气质量等级进行预测.zip

基于AdaBoost分类树模型、梯度提升分类树模型、Bagging分类树模型以及随机森林分类模型对空气质量等级进行预测.zip

2024-06-17

机器学习与数据分析+python读取excel数据+北京市空气质量数据+通过决策树模型对 PM2.5 进行预测

机器学习与数据分析+python读取excel数据+北京市空气质量数据+通过决策树模型对 PM2.5 进行预测

2024-06-17

机器学习与数据分析+python读取excel数据+电视剧播放数据+通过K近邻和一元线性回归模型对质量进行预测

机器学习与数据分析+python读取excel数据+电视剧播放数据+通过K近邻和一元线性回归模型对质量进行预测

2024-06-17

6-5 PWM驱动直流电机.zip

6-5 PWM驱动直流电机.zip

2024-06-15

6-4 PWM驱动舵机.zip

6-4 PWM驱动舵机.zip

2024-06-15

PWM驱动LED呼吸灯

PWM驱动LED呼吸灯

2024-06-15

STM32实现LED灯闪烁

暂无

2024-05-26

python爱心代码高级.zip

python实现爱心代码高级,代码介绍链接如下:https://blog.csdn.net/m0_59951855/article/details/138376940

2024-05-20

json文件实例,用于分析json中存储的数据

这里是一个json文件示例,里面包含了一些数据,可以用于模拟使用json格式存储数据的平台

2024-05-20

基于随机森林和袋装法对PM2.5浓度进行回归预测

机器学习之随机森林算法、袋装法,回归树

2024-05-18

FPA花授粉算法.zip

FPA花授粉算法.zip

2024-05-17

软件开发+QT编程+实现科学计算器计算

创建的一个简单的科学计算器应用程序。根据需要添加了更多功能和科学计算功能,比如三角函数、指数函数等。

2024-05-17

数据分析+python与Mean-Shift均值偏移聚类和BIRCH使用层次平衡迭代减少和聚类+对商品批发商进行市场细分

采用聚类分析对商品批发商进行市场细分。数据(来自UCI的 Wholesale 数据集)是关于荷兰商品批发市场中的440个批发商,某年在各类商品的年批发销售额。商品类别包括生鲜(Fresh)、奶制品(Mik)、杂货类(Grocery)、冷冻食品(Frozen)、洗涤用品和纸类(Detergentspaper)、熟食类(Delicatessen)。这些批发商分别位于三个不同的区域(Region)且其销售渠道(Channel)主要包括餐饮类(包括酒店、餐厅和咖啡店等)和零售店两类。

2024-05-17

基于python开发学生信息管理系统.zip

这个学生信息管理系统是用Python开发的,主要用于管理学生的个人信息和课程信息。它可以记录学生的基本信息,如姓名、学号、性别、年龄等,同时也可以记录学生成绩、课程安排、考勤情况等。 这个系统通常具有以下功能: 添加、删除学生信息:可以输入学生的基本信息并将其存储在数据库中,也可以对学生信息进行删除操作。 查询学生信息:可以根据学号或姓名等信息来查询特定学生的详细信息。 成绩管理:可以记录学生的成绩,在系统中查看和修改学生成绩信息。 课程管理:可以记录学生的选修课程情况,包括课程安排、授课教师等信息。 统计分析:可以对学生成绩进行统计分析,生成报表,帮助教师和管理者更好地了解学生学习情况。

2024-05-17

机器学习与数据分析+python读取excel数据+北京市空气质量数据+通过多元线性回归模型对 PM2.5 进行预测

机器学习与数据分析+python读取excel数据+北京市空气质量数据+通过多元线性回归模型对 PM2.5 进行预测。基于空气质量监测数据(北京市空气质量数据xlsx),讨论如何对PM2.5的浓度进行预测。由于 PM2.5 为数值型变量,其预测属于回归预测问题。首先,建立一元线性回归模型,通过分析 CO 对 PM2.5 的数量影响,对 PM2.5进行预测;然后,将SO,的影响考虑进来,通过多元线性回归模型对 PM2.5 进行预测。

2024-05-17

工程绘图神器:Origin 2021软件安装包

Origin 2021安装包2

2024-05-07

工程绘图神器:Origin 2021软件安装包

Origin 2021安装包1

2024-05-07

机器学习-01-一篇万字长文深入了解机器学习必备准备工作:基础知识学习、机器学习工具选择和Python工具包运用

机器学习-01-一篇万字长文深入了解机器学习必备准备工作:基础知识学习、机器学习工具选择和Python工具包运用

2024-05-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除