- 博客(107)
- 收藏
- 关注

原创 [机器学习聚类算法实战-1] | Scikit-Learn工具包进阶指南:机器学习聚类算法之层次聚类、特征集聚、均值移位聚类、k-均值聚类实战分析
机器学习中的聚类分析是一种无监督学习方法,旨在将数据点划分为相似的组或簇,使得同一组内的数据点彼此相似,而不同组之间的数据点则相对较不相似。聚类分析可以帮助我们理解数据的内在结构,发现数据中隐藏的模式,并将数据进行自然的分组,从而为进一步分析或决策提供基础。K-Means 聚类:将数据点分成预先指定的 k 个簇,每个簇具有最小化簇内平方误差的中心点。K-Means 是一种迭代算法,通过不断更新簇中心点来优化聚类结果。层次聚类:逐步将数据点合并到不断增长的聚类中,形成层次结构。
2024-05-16 18:54:59
3476
67

原创 【机器学习-06】Scikit-Learn机器学习工具包进阶指南:机器学习分类模型实战与数据可视化分析
机器学习分类模型是一种通过学习数据集中的特征与标签之间的关系,从而对新的数据进行分类的方法。其基本思想是通过训练数据来构建一个模型,然后利用这个模型对新的数据进行分类。常见的分类模型包括逻辑回归、支持向量机、决策树、随机森林、K近邻等。机器学习分类模型是一种通过学习数据的特征与它们所属类别之间的关系,从而对新的未知数据进行分类的算法。这些模型可以用于解决各种分类问题,如图像识别、文本分类、医学诊断等。工作原理数据准备:首先,需要准备带有标签的训练数据,其中包含输入特征(即描述数据的属性)和相应的类别标签。
2024-05-13 16:41:03
1577
28

原创 [机器学习-03] Scikit-Learn机器学习工具包学习指南:主要功能与用法解析
Scikit-Learn是一个用于机器学习的Python库,它提供了各种用于数据预处理、模型选择、评估和部署的工具和算法。这个库的设计重点是简单、高效和可扩展性。(1)Scikit-Learn的简单易用性使得用户可以轻松地使用各种机器学习算法,无需深入了解算法的底层实现。其一致的API设计使得算法的调用和使用变得简单直观。这种设计思想使得Scikit-Learn成为许多数据科学从业者和研究人员的首选工具之一。
2024-05-10 20:59:46
1748
40

原创 [机器学习-02] 数据可视化神器:Matplotlib和Seaborn工具包实战图形大全
综合上述分析,Matplotlib 是一个功能强大但比较底层的绘图库,适合绘制各种类型的图形和进行定制化操作;而 Seaborn 则是一个专注于统计数据可视化的高阶库,提供了更方便的统计图表创建和美化功能。当然,这里仅仅只是一部分常用的可视化分析图像,还可以绘制各种复杂的图像,如果需要,可以在官网查看。欢迎大家多多支持!
2024-05-06 15:14:25
2347
11

原创 [机器学习-01]一文了解|机器学习简介、工具选择和Python包基础应用
通过本篇基本可以了解关于机器学习需要完成的所有前期准备工作,包括机器学习基础知识,机器学习工具选择,Python工具包基本使用方法等。机器学习是一种人工智能(AI)的分支,旨在让计算机系统自动通过数据学习并改进。它能够让机器通过分析大量数据来做出决策,而无需编程指定特定任务的解决方案。机器学习的核心思想是通过训练模型来使计算机系统能够自动进行决策,并不断地通过数据来改进自身的性能。
2024-05-03 19:23:13
2019
6

原创 [C++ QT项目实战-01]----C++ QT系统实现多线程通信
双线程可以并行执行,可以更充分地利用多核处理器的资源,从而提高系统的整体性能。通过将一些耗时的操作放在单独的线程中执行,可以避免阻塞主线程,提高程序的响应速度和用户体验。双线程可以同时处理不同的任务,增加系统的并发性,使系统更具有高效性和灵活性。通过将复杂任务拆分成多个线程来执行,可以更容易地管理和维护代码,提高代码的可读性和可维护性。通过将不同功能模块分别放在不同的线程中执行,可以避免由于一个线程的错误导致整个系统崩溃的情况,提高软件的稳定性。
2024-04-26 16:58:28
2913
7

原创 一文了解 | 基于windows下ODBC驱动程序,实现C++ QT调用读取SQL Server2014数据库中的数据
上述完成了建立一个可以“一劳永逸”的数据源,这种方法对开发系统时所需的与数据库连接等功能实现提供了更加实用的思路。这也是对上一篇建立数据表之后,如何实现读取操作进行的后续说明,如果有问题,欢迎在评论区说明,后续还会更新其他内容,希望可以与各位大咖交流,互相学习。
2024-04-19 17:47:54
1360
3

原创 一文解决 | SQL Server2014数据库建立数据表和数据导入
SQL Server数据库具有多方面的优点,主要包括以下几点:1、可靠性高SQL Server数据库是由微软开发和维护的成熟产品,经过了长期的市场验证和实际应用检验,具有高度的稳定性和可靠性。2、性能优越SQL Server在性能方面有着出色的表现,能够处理大规模数据和高并发访问。它采用了优化的查询处理引擎和索引机制,支持多种查询优化技术,如查询优化器、执行计划缓存等,从而提高了查询的执行效率和系统的整体性能。3、安全性强。
2024-04-18 21:55:40
2795
7

原创 一文了解 | FreeRTOS移植到stm32流程
1、RTOS 简介实时操作系统(RTOS)是一种专为实时应用程序设计的操作系统,它能够确保任务在特定的时间约束内完成,并提供可预测的响应时间。RTOS 通常用于嵌入式系统,其中任务的时间敏感性非常重要。实时操作系统分为硬实时和软实时两种类型,硬实时要求任务必须在规定的时间内完成,而软实时则允许偶尔的任务延迟。通过上述步骤之后,便可以使用实时操作系统(FreeRTOS)实现多任务运行,下面代码适用于实现LED灯循环执行的两个任务,可以将程序烧录到开发板查看效果。
2024-04-18 16:41:52
1612
5

原创 一文读懂 | STM32的启动配置,以及从启动到执行main函数的执行步骤
STM32基本外设众多,学习需要花费很长时间。这里首先需要明白的是STM32的启动过程,首先将介绍内存分区以及STM32的3中启动配置,这里并未使用代码详细解释,更多的是用于嵌入式方向面试需要。
2023-10-30 16:32:34
2214

原创 一文解决,anaconda创建虚拟环境,python模型打包,c++程序调用py文件,调用程序编写全流程。
C++程序调用py文件,python模型打包
2023-10-28 20:40:22
1651
5

原创 一文搞懂,指针常量与常量指针、指针数组与数组指针以及指针函数与函数指针
指针常量本质是一个常量,地址是一个常量,地址不可改(&指向不可改),值可以改。常量指针本质是一个指针,值是一个常量,值不可改,地址可以改(&指向可以改)。指针函数本质是一个函数,但是返回值是指针类型,使用时,必须定义同类型指针变量接收。函数指针本质是一个指针,声明一个函数指针,可以为其赋给其他函数地址。使用(*fun)调用函数指针数组本质是一个数组,数组中的元素是指针,占有多个指针的存储空间。数组指针本质是一个指针,指针管理数组的元素,占有内存中一个指针的存储空间。
2023-09-01 14:56:34
1318
4
原创 读取config.json配置文件,赋值变量,实现日志存储功能
实现一个完整的配置文件读取和日志存储功能模块。这个模块将包含配置文件解析、日志初始化和管理功能。config_manager.cpp文件。config_manager.h文件。log_manager.cpp文件。log_manager.h文件。config.json文件。main.cpp文件。
2025-05-29 14:27:45
148
原创 使用多线程读取配置文件,在lamda表达式中使用引用捕获以及值捕获方法说明。
在进行一个项目开发时,目前遇到通过读取配置文件的方式进行获取值的信息,然后通过这些值结合lamda表达式对函数进行实现,下面时使用的初始代码。这部分代码在使用时,。这部分代码出现了三个问题[&]由于这些问题的存在,造成了在启动工作线程之后,并没有根据配置文件的信息进入到去读文件逻辑,而是直接退出。分析原因:在原始代码中,使用了[&]捕获所有外部变量:可能造成ifCanPlayframeCbthisLOG(INFO)[this]改为[this]
2025-05-29 14:15:14
382
原创 C++编程单例模式详细解释---模拟一个网络配置管理器,负责管理和分发网络连接参数
单例模式是一种创建型设计模式,它确保一个类只有一个实例,并提供全局访问点。
2025-05-25 12:53:40
828
原创 嵌入式系统C语言编程常用设计模式---参数表驱动设计
参数表驱动设计的实施需要从需求分析、数据结构设计、接口实现到测试维护的全流程规划。通过合理分层、模块化设计和自动化工具,可以显著提高系统的灵活性、可维护性和开发效率。在资源受限的嵌入式系统中,这种设计模式尤其能发挥出最大优势。
2025-05-23 14:20:41
1127
原创 Linux C++在VScode软件编程中,代码自动补全,错误检查
在 VSCode 中开启对自己创建的已有变量的代码自动提示(IntelliSense),需要确保 C/C++ 扩展和 IntelliSense 引擎正确配置。如上图所示,点击右下角linux,搜索框显示编辑配置(JSON),点击进去,输入如下代码保存即可。
2025-05-17 15:05:09
246
原创 linux系统Ubuntn界面更改为中文显示,配置流程
Linux 系统是一种开源的、多用户的、多任务的操作系统,具有高度的稳定性、安全性和灵活性,被广泛应用于服务器、嵌入式系统、科研、教育以及个人电脑等领域。(zh_CN.UTF-8是简体中文,如果没有zh_CN.UTF-8,就安装语言包,如果存在可以直接设置)打开终端,进入终端界面,输入下方指令,两种指令均可以实现。打开终端,进入终端界面,输入,查看一安装语言包,是否包含。打开终端,进入终端界面,输入,查看一安装语言包,是否包含。安装语言包的方法,在终端输入下方命令,安装中文语言包。
2025-05-10 11:16:57
1047
原创 CAN与CANFD协议说明
在 CAN(Controller Area Network,控制器局域网)协议里,仲裁域波特率和数据域比特率有着不同的含义和作用,下面为你详细介绍并举例说明。
2025-04-19 17:01:35
896
2
原创 C#中同步任务和异步任务
同步任务的代码会按照编写的顺序依次执行,不会在执行过程中让出线程控制权。也就是说,在一个同步方法中,只有当前面的操作完成后,才会执行后面的操作。例如,在进行文件读写、网络请求等操作时,如果使用的是同步版本的 API,那么这些操作就是同步执行的。关键字会暂停方法的执行,直到所等待的异步操作完成,接着再继续执行后续代码。对象,能够对异步任务的状态进行监控,还能等待任务完成或者处理任务的结果。关键字,它会按照代码的顺序依次执行,在执行过程中会阻塞当前线程。关键字会把方法标记成异步方法,在这个异步方法中,
2025-04-16 15:31:18
1039
原创 面向对象编程
在面向对象编程中,除了通过创建类的实例来访问其属性和方法外,还可以通过在一个类里创建另一个类的属性(本质上也是持有另一个类的实例引用)的方式来访问该类的属性和方法。
2025-04-15 16:26:58
326
原创 C#编程基础知识点介绍
封装是面向对象编程的重要原则之一,它可以隐藏对象的内部实现细节,只暴露必要的接口给外部使用。静态字段属于类本身,而不是类的实例,所有实例共享同一个静态字段的值。字段可以为类的方法提供必要的数据,从而支持类的各种行为。例如,在一个表示矩形的。每个对象可以有自己的字段值,这些值代表了对象在特定时刻的属性或数据。结构体是一种值类型,类似于类,但结构体是轻量级的,通常用于存储简单的数据。属性是一种特殊的成员,用于提供对类的私有字段的访问和修改。类是 C# 中最基本的类型,它是对象的蓝图,封装了数据和行为。
2025-04-04 12:01:02
868
原创 CAN FD、传统CAN以及RS-485通信介绍
实际应用中,CAN 总线的通信速率会受到多种因素的影响,如总线长度、传输介质、网络负载、节点数量以及信号质量等3。较长的总线长度、较大的网络负载、较多的节点数量或较差的信号质量等都可能导致数据传输速率降低。
2025-03-21 18:09:10
1092
原创 CRC校验计算说明
CRC 是一种数据传输检错功能,其核心是通过对要传输的数据进行特定的多项式除法运算。综上所述,数据个数不同并不影响使用 CRC 计算校验位,CRC 能够对任意长度的数据进行有效的校验。
2025-03-17 11:29:12
509
原创 位宽,位移操作的含义和作用
位宽(Bit Width)是指一个数字电路(如处理器、存储器等)一次性处理或传输的二进制位的数量。它决定了数据总线的宽度以及数据总线可以传输的数据量。位宽操作:通过位移和掩码操作可以提取和处理数据的不同部分,例如从16位数据中提取高8位或低8位。移位操作:移位操作改变数据的位位置,右移用于提取高位,左移用于处理低位。掩码操作:掩码操作用于从结果中提取特定的位段,确保只保留我们关心的部分。这种操作在处理嵌入式系统、网络协议、数据存储等方面非常常见。
2024-08-09 15:45:25
2412
4
原创 二进制、十进制、十六进制、常用有符号整型、无符号整型知识介绍
一个字节(byte)是计算机中最基本的数据单位之一,它的表示方式可以用不同的进制系统表示。
2024-08-05 16:37:39
1440
1
原创 【电池管理系统(BMS)-01】 | 电池管理系统简介,动力电池和储能电池区别
BMS在现代电池技术中扮演着至关重要的角色,它不仅保证了电池的安全使用,还通过优化电池管理提高了系统的整体性能和效率。
2024-07-31 17:28:24
1534
1
原创 【机器学习-11】 | Scikit-Learn工具包进阶指南:Scikit-Learn工具包之不同度量的聚集聚类、归纳聚类、光学聚类算法的演示以及BIRCH和MiniBatchKMeans的比较分析
Scikit-Learn工具包提供了多种聚类算法,涵盖了不同的聚类方法和应用场景。
2024-06-25 17:53:35
1236
9
原创 【机器学习-10】 | Scikit-Learn工具包进阶指南:Scikit-Learn工具包之支持向量机模块研究
支持向量机(Support Vector Machine, SVM)是一种强大且灵活的监督学习算法,用于分类和回归分析。它特别适用于小样本数据集上的分类问题,同时也能有效地处理高维空间数据。
2024-06-25 17:25:14
1506
原创 【C++提高编程-11】----C++ STL常用集合算法
在C++ STL(标准模板库)中,有几个常用的集合算法可以用来操作集合(如std::set或std::unordered_set)
2024-06-21 15:12:54
1351
4
原创 【Python机器学习实战】 | 基于支持向量机(Support Vector Machine, SVM)进行分类和回归任务分析
svm.SVC是Scikit-learn中用于支持向量机(Support Vector Machine, SVM)分类任务的类。具体来说,svm.SVC实现了基于支持向量的分类器,其核心是在特征空间中找到最佳的超平面来区分不同类别的数据点。
2024-06-21 11:00:07
1226
1
原创 【Python机器学习实战】 | 基于PCA主成分分析技术读入空气质量监测数据进行数据预处理并计算空气质量综合评测结果
主成分分析(Principal Component Analysis, PCA)是一种常用的机器学习和数据分析技术,用于降低数据维度、识别数据中的模式、发现变量之间的关系等。
2024-06-20 16:41:31
966
4
原创 【Python机器学习实战】 | 基于线性回归以及支持向量机对汽车MPG与自重进行回归预测
线性回归适用于预测连续数值,而支持向量机适用于处理分类问题,并且能够处理非线性分类任务。选择适当的算法取决于数据类型、任务需求和模型复杂度。
2024-06-20 10:22:57
820
1
原创 【Python机器学习实战】 | 基于K近邻算法和一般线性回归算法对电视剧播放数据进行回归预测
K近邻(K-Nearest Neighbors,简称KNN)算法是一种基本的分类和回归方法,它可以用于解决分类和回归问题。
2024-06-20 09:30:44
1964
7
原创 【Python机器学习实战】 | Lasso回归和弹性网回归详细分析研究
综上所述,Lasso回归和弹性网回归是两种常用的线性回归方法,通过正则化惩罚的引入,能够在保持模型预测准确性的同时,实现特征选择和模型复杂度控制,适用于处理各种类型的数据集和回归问题。
2024-06-19 19:48:07
2288
6
原创 【C++提高编程-10】----C++ STL常用拷贝和替换算法
STL(Standard Template Library)是C++标准库的一部分,提供了丰富的数据结构和算法,用于处理数据和实现常见的计算任务。STL中的算法分为几类,包括遍历算法、修改算法、排序算法、查找算法、数值算法等,每类算法都有其特定的应用场景和功能。
2024-06-19 11:08:23
794
原创 【Python机器学习实战】 | 基于空气质量监测数据,采用多层神经网络预测PM2.5浓度
多层网络是一种深度学习模型,也称为深度神经网络(Deep Neural Network, DNN)。它由多个神经网络层(或称为隐藏层)组成,每一层包含多个神经元(或节点),用于逐层提取和学习输入数据的特征表示。
2024-06-19 10:45:09
1343
原创 【Python机器学习实战】 | 基于决策树的药物研究分类预测
决策树模型以其简单直观的特性和广泛的适用性,在许多领域都得到了有效的应用。对于复杂的数据集或者需要更高预测精度的问题,可以通过集成学习方法(如随机森林、梯度提升树)来进一步改进决策树模型的性能。
2024-06-18 10:52:24
2242
19
Python机器学习全套代码-数据建模与分析
2025-04-19
【matlab画图】资源.zip
2024-06-20
基于AdaBoost分类树模型、梯度提升分类树模型、Bagging分类树模型以及随机森林分类模型对空气质量等级进行预测.zip
2024-06-17
机器学习与数据分析+python读取excel数据+北京市空气质量数据+通过决策树模型对 PM2.5 进行预测
2024-06-17
机器学习与数据分析+python读取excel数据+电视剧播放数据+通过K近邻和一元线性回归模型对质量进行预测
2024-06-17
python爱心代码高级.zip
2024-05-20
基于python开发学生信息管理系统.zip
2024-05-17
机器学习与数据分析+python读取excel数据+北京市空气质量数据+通过多元线性回归模型对 PM2.5 进行预测
2024-05-17
数据分析+python与Mean-Shift均值偏移聚类和BIRCH使用层次平衡迭代减少和聚类+对商品批发商进行市场细分
2024-05-17
机器学习-01-一篇万字长文深入了解机器学习必备准备工作:基础知识学习、机器学习工具选择和Python工具包运用
2024-05-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人