【算法】浅谈 k 短路问题的三种解法 -bosh

这篇文章的前两个 Solution 是我一年多前写的,第三个 Solution 当时不会,因此拖到 19 年才写出来。

k 短路问题

问题描述:

从一幅有向图的起点走到终点,途中可以经过一个点多次,到达终点后依然可以继续行走,但是不能中途停留。求所有这样的路径中第 l 短的长度。

Solution1: 迭代加深搜索

最容易想到也最自然的做法是将各个从起点到达终点的路径一一枚举,排序后输出第 k 条路径。但是由于路径条数是无穷的,我们不可能枚举所有路径。解决方法和 “埃及分数” 问题类似。于是在搜索时加以限制,就可以求出一定长度限制以下的路径。

优化:在搜索时若当前路径长度超过限制长度时,我们需要剪枝,停止继续搜索这个分支。同时,将这个剪枝继续加深,如果当前路径长度加上当前点到终点的距离大于限制长度,剪枝。这种最优性剪枝在实际运用中十分有效。

缺陷:这种搜索在判断是否无解的问题上不是很有效。我们不知道限制长度迭代到多大时应该输出无解。但是这种方法在其他方面还是比较优秀的。

时间复杂度:O(???)​

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>

#define MX 1001
#define ME 100001
#define MXDIS 100

using namespace std;

int fst[MX],nxt[ME],v[ME],w[ME],lnum;
int fin[MX],nin[ME],vin[ME],win[ME],inum;
int n,m,S,T,K;

void addeg(int nu,int nv,int nw){nxt[++lnum]=fst[nu];fst[nu]=lnum;v[lnum]=nv;w[lnum]=nw;}

void addin(int nu,int nv,int nw){nin[++inum]=fin[nu];fin[nu]=inum;vin[lnum]=nv;win[lnum]=nw;}

void input()
{
    int a,b,c;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&a,&b,&c);
        addeg(a,b,c);
        addin(b,a,c);
    }
    scanf("%d%d%d",&S,&T,&K);
}

int dis[MX],q[MX],inq[MX];
void SPFA(int frm)
{
    int t=1,h=0,nu,nv;
    for(int i=1;i<=n;i++)dis[i]=99999999;
    q[++h]=frm;
    dis[frm]=0;
    inq[frm]=1;
    while(h>=t)
    {
        nu=q[(t++)%MX];
        for(int i=fin[nu];i!=-1;i=nin[i])
        {
            nv=vin[i];
            if(dis[nv]>dis[nu]+win[i])
            {
                dis[nv]=dis[nu]+win[i];
                if(!inq[nv])
                {
                    inq[nv]=1;
                    q[(++h)%MX]=nv;
                }
            }
        }
        inq[nu]=0;
    }
}

int ans,top;

void dfs(int x,int now)
{
    if(x==T&&now!=0)ans++;
    if(ans>=K){cout<<top<<endl;exit(0);}
    for(int i=fst[x];i!=-1;i=nxt[i])
    {
        if(dis[v[i]]+now+w[i]>top)continue;
        dfs(v[i],now+w[i]);
    }
}

void work()
{   
    SPFA(T);
    if(dis[S]>100000){cout<<-1<<endl;return;}
    for(int i=dis[S];i<=dis[S]+MXDIS;i++)
    {
        ans=0;
        top=i;
        dfs(S,0);
    }
    cout<<-1<<endl;
}

void init()
{
    memset(fst,0xff,sizeof(fst));
    memset(fin,0xff,sizeof(fin));
    inum=-1;
    lnum=-1;
}

int main()
{
    init();
    input();
    work();
    return 0;
}

Solution2:A*

首先我们需要一定的灵感:次短路和最短路的不同在于某一步的失策。也就是说:你按着最短路向终点走,有一步突然走错了,然后紧接着你按着现在的最短方向走到了终点,那么这条路也许就是次短路。是不是次短路取决于你是哪一步走错了。如果是一步重要的路走错了,这条路也许会变地非常长,反之不会太长。

如何评估这一步走错对最短路的影响?我们使用 A*算法的估价函数。用 F(x) 表示以当前的走法走到 x 的距离,H(X) 表示 x 到终点的最短路长度。那么对于 x 节点,我们下一步可以选择 “走对” 或者 “走错”,于是这一个 x 又可以扩展到相邻的节点。每一次我们选择 F(x)+H(X) 最小的 x 节点扩展,那么最先到达终点时终点的 F(x) 就是最短路 (是不是很像 dijstra?),第二次到达终点就是次短路。Why? 简单地将讲,我们的扩展方式确保了扩展节点的 F(x)+H(x) 一定是递增的,而到达了终点,H(x)=0,那么 F(x) 就是递增的。

这种算法在随机数据下,若边权较小,k 较大,速度不如上一种方法。但是它的优点是稳定。

时间复杂度 O(NKlogK)

一种卡 A* 的图:构造一个大环,包含起始节点和终止节点即可。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>

#define MX 10001
#define ME 100001

using namespace std;

int n,m,k;
int S,T;

struct Node
{
    int p,f,h;
    bool operator <(const Node a)const
    {
        if(a.f+a.h<f+h)return 1;
        else return 0;
    }
    Node(int a,int b,int c)
    {
        this->p=a,this->f=b,this->h=c;
    }
};
Node make(int a,int b,int c)
{
    Node thi(a,b,c);
    return thi;
}

int dis[MX];

class graph
{
    public:
    int fst[MX],nxt[ME],v[ME],w[ME],lnum;
    int q[MX],inq[MX];
    priority_queue<Node> mp;
    void init()
    {
        memset(fst,0xff,sizeof(fst));
        lnum=-1;
    }
    void addeg(int nu,int nv,int nw)
    {
        nxt[++lnum]=fst[nu];
        fst[nu]=lnum;
        v[lnum]=nv;
        w[lnum]=nw;
    }
    void SPFA(int frm)
    {
        int h=0,t=1,x,y;
        memset(dis,0x3f,sizeof(dis));
        q[++h]=frm;
        dis[frm]=0;
        inq[frm]=1;
        while(h>=t)
        {
            x=q[(t++)%ME];
            for(int i=fst[x];i!=-1;i=nxt[i])
            {
                y=v[i];
                if(dis[y]>dis[x]+w[i])
                {
                    dis[y]=dis[x]+w[i];
                    if(!inq[y])
                    {
                        q[(++h)%ME]=y;
                        inq[y]=1;
                    }
                }
            }
            inq[x]=0;
        }
    }
    int Astar(int frm,int to)
    {
        Node x(0,0,0);
        int cnt=0;
        if(frm==to)k++;
        if(dis[frm]>100000)return -1;
        mp.push(make(frm,0,dis[frm]));
        while(!mp.empty())
        {
            x=mp.top(),mp.pop();
            if(x.p==to)
            {
                cnt++;
                if(cnt==k)return x.f+x.h;
            }
            for(int i=fst[x.p];i!=-1;i=nxt[i])mp.push(make(v[i],x.f+w[i],dis[v[i]]));
        }
        return -1;
    }

}g1,g2;

void input()
{
    int a,b,c;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&a,&b,&c);
        g1.addeg(a,b,c);
        g2.addeg(b,a,c);
    }
    scanf("%d%d%d",&S,&T,&k);
}

int main()
{
    g1.init(),g2.init();
    input();
    g2.SPFA(T);
    printf("%d\n",g1.Astar(S,T));
    return 0;
}

【算法】浅谈 k 短路问题的三种解法 -boshi – MiNa!

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值