web前端自学,HTML列表标签

题目描述

返回目录

给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点  (i, ai) 。在坐标内画 n 条垂直线,垂直线 i  的两个端点分别为  (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与  x  轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器。

示例 1:

输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
复制代码

示例 2:

输入:height = [1,1]
输出:1
复制代码

示例 3:

输入:height = [4,3,2,1,4]
输出:16
复制代码

示例 4:

输入:height = [1,2,1]
输出:2
复制代码

提示:

  • n = height.length
  • 2 <= n <= 3 * 104
  • 0 <= height[i] <= 3 * 104

思路分析

思路一:暴力遍历

逐个尝试每两条 bar 的组合,求出面积,得到最大的组合。

  • 时间复杂度: O(n^2),循环运行 n(n-1)/2 次
  • 空间复杂度: O(1),只使用了常数个变量

tips:

很遗憾,这个算法被 LeetCode 判为超时……

思路二:双指针循环

使用双指针从两端向中心移动,每次移动较矮的那端以做其他的线段尝试,仍然取最大组合。

循环一遍就可以了

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

AC 代码

题解一:暴力遍历

/**
 * @param {number[]} height
 * @return {number}
 */
var maxArea = function (height) {
  if (height.length <= 1) {
    return 0
  }
  let maxArea = 0
  let area = 0
  let minBar = 0
  for (let i = 0; i < height.length; i++) {
    for (let j = i + 1; j < height.length; j++) {
      minBar = Math.min(height[i], height[j])
      area = minBar * (j - i)
      maxArea = Math.max(maxArea, area)
    }
  }
  return maxArea
}
复制代码

题解二:双指针循环

/**
 * @param {number[]} height
 * @return {number}
 */
var maxArea = function (height) {
  let left = 0
  let right = height.length - 1
  let result = 0
  while (left < right) {
    result = Math.max(
      result,
      (right - left) * Math.min(height[left], height[right])
    )
    if (height[left] < height[right]) {
      left++
    } else {
      right--
    }
  }
  return result
}
复制代码

总结

返回目录

三月你好,春暖花开。加油!

了解更多加入我们前端学习圈

4. 感悟

最近的面试,有以下几点感悟:

  1. 电话面试比视频面试靠谱

    视频面试有点尬的感觉,而且有时会卡顿,相比之下电话面试就不会存在这些问题

    个人更喜欢电话面试的形式

  2. 面试前多一些准备

    复工后的第2天,面了第一家公司,完全没状态,答的一塌糊涂

    建议面试前一定要调整好状态,特别是这次春节在家宅的时间有点长,更要调整

  3. 一定要有的放矢

    一定要对你所投递岗位的公司有一定了解,避免面试通过了你又不想去,浪费双方时间

    建议对自己投递的岗位和公司多花点时间去仔细了解下

一塌糊涂

建议面试前一定要调整好状态,特别是这次春节在家宅的时间有点长,更要调整

  1. 一定要有的放矢

    一定要对你所投递岗位的公司有一定了解,避免面试通过了你又不想去,浪费双方时间

    建议对自己投递的岗位和公司多花点时间去仔细了解下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值