【基础论文六】Domain separation networks

本文介绍了Domain Separation Networks(DSNs),它通过学习图像表示的私有和共享子空间来实现域适应。DSNs包含私有和共享编码器,以及共享解码器和分类器。通过差异损失、相似损失和重构损失,DSNs能够分离并适配源域和目标域的特征,从而在非监督域适应中表现出优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

受私有共享组件分析工作的启发,我们显式地学习了提取图像表示,这些图像表示被划分为两个子空间:一个组件是每个域的私有组件,另一个组件是跨域共享的。我们的模型不仅被训练在源域中执行我们关心的任务,而且使用分区表示来重构来自这两个域的图像。我们的新体系结构产生了一个模型,该模型在一系列非监督域适应场景上的性能优于最先进的模型,并且还生成了私有和共享表示的可视化,从而支持对域适应过程的解释。模型引入了每个域的私有子空间的概念,它捕获了域的特定属性,比如背景和低层图像统计。共享子空间通过使用自动编码器和显式丢失函数来实现,它捕获域共享的表示。通过找到一个与私有子空间正交的共享子空间,我们的模型能够分离每个域特有的信息,并在此过程中生成对当前任务更有意义的表示。

Domain Separation Networks (DSNs)

 网络结构包含:

  • Private Target Encoder E_{p}^{t}(x^{t}) : 目标域私有编码器,用来提取目标域的私有特征。
  • Private Source Encoder E_{p}^{s}(x^{s}): 源域私有编码器,用来提取源域的私有特征。
  • Shared Encoder E_{c}(x): 共享编码器,用来提取源域和目标域的公有特征。
  • Shared Decoder D(E_{c}(x)+E_{p}(x)) : 共享解码器,用来将私有特征和公有特征组成的样本进行解码,即对输入x进行重构。
  • Classifier G(E_{c}(x^{s})): 分类器,在训练时用来对源域样本进行分类,在训练完成时就可以直接用在目标域数据上进行分类。

(一)首先忽略右下角的分类器,剩下部分就是自编码器的结构。源域样本 x^{s}首先进入E_{p}^{s}(x^{s})E_{c}(x),之后两个编码器分别输出 h_{p}^{s} 和 h_{c}^{s} 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值