【域适应十】2022 CVPR Slimmable Domain Adaptation

本文介绍了2022年CVPR会议上关于 Slimmable Domain Adaptation 的研究,该研究旨在解决深度学习模型在无监督领域适应中的权重自适应和架构自适应问题。通过随机集成蒸馏(SEED)和优化分离三分类器(OSTC),提升模型库中所有模型的自适应性能,并在有限计算预算下寻找最佳模型架构。实验结果证明了该方法的有效性。
摘要由CSDN通过智能技术生成

1.motivation

尽管在监督任务中研究了可精简神经网络,其中具有不同层宽度(即通道数)的模型可以耦合到权重共享模型库中进行优化,当可精简神经网络满足无监督领域自适应时,仍然存在两个挑战:

1)权重自适应:如何同时提高模型库中所有模型的自适应性能?

2)架构自适应:给定特定的计算预算,如何在未标记的目标数据上搜索合适的模型?

对于第一个挑战,本文提出了随机集成蒸馏(SEED)来与模型库中的模型交互,以抑制模型内自适应对未标记目标数据的不确定性。SEED是一个课程相互学习框架,其中利用随机采样模型的预测期望来帮助模型库的领域自适应。至于模型内自适应,借鉴了最先进的基于双分类器的领域混淆方法(如SymNet和MCD)的解决方案。然而,分析了模型间交互和模型内自适应之间存在优化冲突,这促使增强优化分离三分类器(OSTC)来调节它们之间的优化。

对于第二个挑战,提出了一种无监督的性能评估度量,该度量被缓和为候选模型和锚模型之间的输出差异。度量越小,则假定性能越好。

本文采用ResNet-50一个超级网络,将具有不同层宽度的许多模型耦合起来,形成模型库。超级网络应该首先在ImageNet上进行预训练,然后在下游任务上进行微调。

2. method

SymNets网络-CSDN博客

2.1. SlimDA框架

在可精简神经网络中已经证明,具有不同宽度的许多网络(即层通道)可以耦合到权重共享模型库中,并同时进行优化。在基线中,将SymNet与可精简神经网络直接合并。为了简单起见,SymNet的总体目标统一为Ldc。在每次训练迭代中,可以从模型库{(Fj,Csj,Ctj)}mj=1∈(F,Cs,Ct)中随机采样几个模型,称为模型批,其中m表示模型批大小。这里(F,Cs,Ct)可以被视为最大的模型,并且剩余的模型可以以权重共享的方式从中采样。为了确保模型库可以完全训练,在每次训练迭代中,应该对最大和最小的模型进行采样,并将其作为模型批的一部分。(请注意,每个模型在部署之前都应该重新计算BN层的统计参数)。

该基线可以被视为方程5和方程6的两个交替过程,以优化模型库。为了鼓励上述基线中的模型间交互,本文提出了SlimDA框架,如图2所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值