弱导数存在的意义是什么?

        还记得在刚读研学习PDE的时候,老师上来就巴拉巴拉一堆不等式的证明,完了就是 Sobolev 空间,两节课后就引出了弱导数,当初就感觉十分莫名其妙。(虽然确实没认真听,但会不会是老师没讲清楚!)

        匹夫鄙见,欢迎讨论。我们直接从弱导数的定义开始:

一个函数 u \in L^2(\Omega) 的弱导数 u' 定义为,如果存在 v \in L^2(\Omega) 满足对任意的光滑且紧支撑的测试函数 \varphi \in C^{\infty}(\Omega) ,都有:

\int_{\Omega}u(x)\varphi'(x)dx=-\int_{\Omega}v(x)\varphi(x)dx

那么 v 就是 u 的弱导数。

        定义中有几点需要说明的地方:

1、首先,这个公式本质就是分部积分,即 \int_{\Omega} udv=uv|_{\partial\Omega}-\int_{\Omega} vdu ;
2、其次,uv 项去哪了呢?因为定义中要求了 \varphi 光滑(可无穷次求导)且具有紧支撑(在区域边界函数值为0),所以这一项恒为0;
3、最后,为什么要求 u 和 v 都属于 L^2(\Omega) 空间呢?由于 \varphi \in C^{\infty}(\Omega) ,因此 |\varphi'(x)| \leq C ,就有 \left| \int_\Omega u(x) \varphi'(x) dx \right| \leq C \int_\Omega |u(x)| dx\leq C \left( \int_\Omega |u(x)|^2 dx \right)^{1/2} \left( \int_\Omega 1^2 dx \right)^{1/2} ,可见只要 u 属于 L^2(\Omega) 空间,以上不等式就有界,这样最左端的积分才有意义。

        既然说到了 L^2(\Omega) 空间(更一般的,称 L^p(\Omega) 空间),就多提一嘴,别问 Sobolev 空间是什么东西,他不像我们一般意义上的一维、二维或三维空间,就是一个很抽象的无限维空间(既然是无限维的你肯定想不到了,就算是普通的空间,我们也就最多能想象到三维空间而已),一般情况下用符号 W^{k,p}(\Omega) 或者 W^k_p(\Omega) 来表示 Sobolev 空间。 既然说到了 Sobolev 空间,就不得不提一嘴 Banach 空间,或者叫完备的赋范线性空间,完备意思是每个柯西列在该空间内都收敛,赋范意思是赋予范数定义,线性空间就是满足一些常见的运算法则。

说了这么多,其实 L^p(\Omega) 空间和 W^{k,p}(\Omega) 空间就是两个最最最典型的 Banach 空间的例子,这两者的定义也非常简单,即

L^p(\Omega) = \left\{f|\left(\int_{\Omega }\left|f\right|^p d\mu\right)^{1/p}) < \infty\right\}

W^{k,p}(\Omega) = \{u|D^{\alpha}u\in L^p(\Omega),0\leq|\alpha|\leq k\}

特别的,当 k=0 时,W^{0,p}(\Omega) = L^p(\Omega) ,当 p=2 时,W^{k,2}(\Omega) = H^k(\Omega) ,其中 H^k(\Omega) 表示希尔伯特空间。

        以上空间都是无限维空间,即你找不到一组基底来表示这些空间,也就是说,任何函数都不能通过有限线性组合的基函数来精确表示,所以只能用抽象的定义来表示。至此,你以后就可以出去装逼了:
        1、Banach 空间是什么?完备的赋范线性空间。
        2、Banach 空间有啥例子? L^p(\Omega) 空间(P次可积函数组成的空间)和 W^{k,p}(\Omega) 空间( 直到k次导数都P次可积函数组成的空间,名字太长,所以就说 Sobolev 空间,这样更装)。

好,跑题了,弱导数到底有什么意义呢?

        如果我给你一个不连续函数 f=|x|, x \in [-1,1] ,显然这个函数不可导(一定要给出定义域),因为当 x=0 时,左右倒数分别是 -1 和 1,那该怎么办,才能让这个函数可以求导呢。

        再如果我给了你一个ODE,u'=f,其中 f 是一个分段函数,满足 f=-1, x\in[-1,0] ,f=1,x \in (0,1],请问此时 u 应该是多少呢?直观上 u = |x|,但是由上分析此函数不可求导,难道这个方程没有解吗?

        到底要怎么样才能最简单的克服这种窘境,显然只要 |x| 能求导,那么以上两个“如果”就可以自然满足。现在弱导数定义可以说是呼之欲出,既然这个函数就因为 x=0 这一个点给整坏了,那能不能给娃修好(呃好像有点难,不太会),要不然那直接扔掉算了,一了百了(哎好像可以,一个点就是零测度,不影响积分),也就是说,无论 x=0 这一点处的函数值取多少,都不影响 \int_{-1}^1 |x|dx 的结果,再配合分部积分就有,

\int_{-1}^1 |x|\varphi'(x)dx = \int_{-1}^0 -x\varphi'(x)dx +\int_0^1 x\varphi'(x)dx =-\int_{-1}^0 -1\ast \varphi(x)dx - \int_0^1 1\ast \varphi(x)dx

注意这里分段之后其实就是强导数,但是千万不要钻牛角尖,不要太看重这里的 -1 和 1,总之从这里我们可以看出,对于如上的分段函数 f ,真的可以找到一个解 |x| ,来使得OED成立,但是切记描述为“使得ODE成立”是不对的,正确的描述的是“使得ODE的变分形式成立”

        综上,弱导数存在的意义简单的说就是拓展了强导数,它允许我们通过积分形式处理不够光滑的函数,使得更多函数可以被视为偏微分方程的解u'=f 这一ODE解的存在唯一性的证明早就存在了,只不过证明过程中要求 f 有足够的连续性,这里我给的例子 f 是一个间断函数,自然一般意义下的强解也不存在,但这并不意味着这个方程不可解。以上通过弱导数的定义,我们确确实实找到了 f 对应的弱解 |x|,为什么叫做弱解,首先它不可导,其次这个解成立的前提是定义在积分意义下,最后一定是对任意的 \varphi(x) 都成立。

        弱导数之所以叫做弱导数其实仅仅就是因为它拓展了传统意义上的强导数,事实上它与强导数几乎没啥关系。对于经典的强导数来说,给定任意一个可导函数,可以精确的求出其对应的导函数,当然也能够计算出任意一点的导数,是一个逐点意义下的概念。但弱导数却不一样,它仅仅是给出一个抽象的定义,他不是为了让你精确的求出某个函数的弱导函数,当然也不能够计算出任意一点的弱导数。弱导数的定义中强调的是弱导数的存在性,其更关心的是一种整体下的意义,通过积分的方式捕捉函数在特定范围内的平均变化,而不是依赖于单点的变化率,这使得我们可以处理不连续现象,找到更广泛意义下的解。

        在弱导数的定义下,就不需要担心找不到ODE或PDE的解,例如给定泊松方程 u''=f,这里要求 u 必须属于 C^2 空间,即二阶可导,但是如果 f 光滑性很弱(比如是分段常函数),显然这样的 u 是不存在,但我们任然可以在 Sobolev 空间中找到弱解(弱解的存在唯一性也是有证明的),这里再给一个具体的例子:
        对于一维泊松方程来说,如果有

f=\begin{cases} 2 & \text{ if } x= [0,1/2]\\ -2 & \text{ if } x= (1/2,1] \end{cases}

利用弱导数的性质(分段计算,其实就是强导数)及 u 的一阶可导性,可确定唯一的弱解 u 为

u=\begin{cases} x^2-\frac{1}{2}x & \text{ if } x= [0,1/2]\\ -x^2+\frac{3}{2}x -\frac{1}{2} & \text{ if } x= (1/2,1] \end{cases}

注意这里的 u 是弱解,因为它满足的不是原来的二阶PDE,其仅仅满足原方程的变分形式。

        最后,切记弱导数的定义不是让你用来求某个函数的弱导数等于什么表达式的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值