dy=y'du=f'(u)du(1)
微分形式不变性,顾名思义是微分的形式是不变的这样一个性质。那么这个形式具体指微分中的怎么样的一个形式呢?那就是上面所写的那样一个等式。等式中的y,u,f都是会改变的,不变的是这个等式的形式。
很多人其实不知道这个等式的重要作用,在未求微分之前,它是y=f(u) ,求微分后成为(1),(1)的形式是不变的。在认识真实世界的时候,面对的困难是复杂和变化,微积分可以解决变化的问题,形式不变性则是很重要的一环。一旦找到变量之间的f,不管是一元还是多元,都能依靠一阶微分的形式不变性进行求微分,也就是说将宏观的世界变成了微观可运算的数据,从而能够认识世界。
例如物理中的电学问题,往往在最理想的环境地下也会有至少两个变量,如果没有形式不变性联系这两个变量之间的关系,那么就无法求积分(两个变量是没有联系的,不知道对哪个变量积分)。然后就只能停留在某一点上面,也就是停留在某一个变量的微观上面;如下述问题只能停留在dL的微观上面,θ还是宏观,只有把L与θ的关系找到,并且利用形式不变性把宏观深入到微观,才能够求积分出I,也就是返回到有价值的宏观。
如果不存在形式不变性,则很多关系是无法求解的,因为没有一种数学工具能给那样的式子求微分,人类就只能把握住各种变化之间的定性关系,无法深入到微观。