亿只小灿灿
这个作者很懒,什么都没留下…
展开
-
什么是Seaborn?
Seaborn 是基于 Python 的Matplotlib的数据可视化库,它通过更简洁的接口和默认美观的样式,让用户能快速生成高质量的统计图表。相比 Matplotlib,Seaborn 更专注于统计数据的可视化,尤其擅长展示变量之间的关系、分布特征和数据模式。原创 2025-05-21 08:45:00 · 10 阅读 · 0 评论 -
深入了解 H2O.ai:人工智能领域的创新力量
H2O.ai 是一家致力于降低人工智能和机器学习使用门槛的科技公司,它以开源软件为核心,提供覆盖数据处理、模型训练到部署的全流程解决方案,被广泛应用于金融、医疗、零售等多个行业。接下来,我将结合丰富的示例代码,带你全面了解 H2O.ai 的强大功能与独特魅力。原创 2025-05-21 07:30:00 · 9 阅读 · 0 评论 -
SciPy入门
SciPy 是 Python 生态系统中科学计算的核心库之一,它基于 NumPy 构建,为数值计算、优化、信号处理、统计分析等众多科学和工程领域提供了高效的工具和算法。接下来我将全面介绍 SciPy 的功能、使用方法,并通过丰富的示例代码帮助你深入理解。原创 2025-05-21 08:30:00 · 8 阅读 · 0 评论 -
NumPy——Python 科学计算的基石
NumPy 作为 Python 科学计算的基础库,通过强大的 ndarray 数组对象和丰富的函数库,极大地提高了 Python 在数值计算方面的效率和能力。无论是简单的数据处理,还是复杂的科学计算、机器学习任务,NumPy 都扮演着不可或缺的角色。掌握 NumPy 的基本概念、核心功能和使用方法,是深入学习 Python 科学计算和数据分析的必经之路。原创 2025-05-21 07:15:00 · 7 阅读 · 0 评论 -
TensorRT之入门指南
TensorRT 是 NVIDIA 开发的高性能深度学习推理优化器,专为 GPU 加速推理而设计。本文将全面介绍 TensorRT 的 Python API,通过丰富的示例代码展示如何在实际项目中使用 TensorRT 优化深度学习模型的推理性能。原创 2025-05-20 09:00:00 · 174 阅读 · 0 评论 -
Shap入门
Shap 基于博弈论中的 Shapley 值概念。在多人合作博弈场景中,Shapley 值用于公平地分配合作产生的收益,它考虑了每个参与者在所有可能合作顺序下对最终收益的边际贡献,并取平均值作为该参与者应得的收益份额。将这一概念迁移到机器学习,模型的每个输入特征就如同博弈中的参与者,模型的预测结果则是合作产生的 “收益”。原创 2025-05-20 07:45:00 · 18 阅读 · 0 评论 -
PyTorch Geometric入门
PyTorch Geometric 是一个基于 PyTorch 的深度学习库,专门用于处理不规则的几何数据,如图形(Graphs)、点云(Point Clouds)等。在传统的深度学习任务中,数据大多以规则的张量(如矩阵、图像)形式出现,而现实世界中有大量数据是图结构的,例如社交网络、分子结构、推荐系统中的用户 - 物品关系等。PyTorch Geometric 为这类数据的处理和建模提供了高效、灵活的工具,极大地推动了图神经网络(Graph Neural Networks, GNNs)的发展与应用。原创 2025-05-19 08:45:00 · 76 阅读 · 0 评论 -
什么是Dask?
Dask 本质上是一个并行计算库,它有两大核心 “武器”:动态任务调度器和并行数据结构。动态任务调度器就像一个聪明的管家,能把复杂的计算任务拆解成一个个小任务,然后合理分配到计算机的各个资源上执行;并行数据结构则是对我们熟悉的 Pandas DataFrame、NumPy 数组的升级,让它们能处理远超内存容量的数据。原创 2025-05-19 08:15:00 · 113 阅读 · 0 评论 -
AutoKeras:自动化深度学习的强大工具
AutoKeras 是一个开源的自动化机器学习(AutoML)库,专注于自动化深度学习模型的构建、训练和优化。本文将全面介绍 AutoKeras 的核心概念、工作原理、主要组件以及应用场景。通过丰富的示例代码和详细的解释,帮助读者理解 AutoKeras 如何简化深度学习流程,降低技术门槛,使更多人能够利用深度学习解决实际问题。原创 2025-05-18 08:00:00 · 15 阅读 · 0 评论 -
Apache Spark:大数据处理与分析的统一引擎
Apache Spark 是一个开源的大规模数据处理引擎,旨在应对海量数据的处理挑战。本文深入探讨了 Spark 的核心概念、架构设计、编程模型、组件生态及其应用场景。Spark 的核心抽象是弹性分布式数据集(RDD),支持分布式计算、容错性和高性能处理。其架构包括 Driver Program、Cluster Manager、Worker Node 和 Executor 等组件,通过 DAG 调度和内存管理优化任务执行。原创 2025-05-18 09:00:00 · 137 阅读 · 0 评论 -
Stable Baselines3:简化强化学习实践的强大框架
StableBaselines3 是一个基于 PyTorch 的开源强化学习库,旨在为研究人员和开发者提供简洁、高效且易于使用的强化学习工具。本文全面介绍了 StableBaselines3 的核心概念、算法实现、应用场景、模型训练与评估方法,并通过丰富的示例代码展示了其强大功能。原创 2025-05-17 09:30:00 · 116 阅读 · 0 评论 -
Detectron2: Facebook AI Research 的强大计算机视觉库
Detectron2是Facebook AI Research(FAIR)基于PyTorch开发的开源计算机视觉库,广泛应用于目标检测、实例分割、关键点检测和全景分割等任务。作为Detectron的继任者,Detectron2通过模块化设计、高性能实现和丰富的功能,提供了灵活且高效的开发平台。原创 2025-05-17 07:45:00 · 24 阅读 · 0 评论 -
解锁自然语言处理黑科技:走进spaCy的神奇世界
spaCy是一款基于Python的开源自然语言处理(NLP)库,专为生产环境设计,提供高效、强大且易于使用的NLP解决方案。其核心特点包括高性能、简洁一致的API、多语言支持和丰富的内置NLP功能。原创 2025-05-16 07:15:00 · 133 阅读 · 0 评论 -
NLTK:自然语言处理工具包
NLTK 作为一个功能强大的自然语言处理工具包,提供了丰富的语料库、工具集和算法,使得自然语言处理任务的实现变得更加简单和高效。本文介绍了 NLTK 的安装、常用功能、语料库、算法以及在实际应用中的案例。原创 2025-05-16 07:45:00 · 21 阅读 · 0 评论 -
MediaPipe:Google 的跨平台开源多媒体机器学习框架
MediaPipe是Google开发的开源跨平台框架,旨在简化多媒体机器学习应用的开发。它提供了一系列预训练模型和工具,支持人脸识别、手势识别、姿态估计、物体检测等多种任务,并能在桌面、移动端、Web及嵌入式设备上运行。原创 2025-05-15 10:30:00 · 132 阅读 · 0 评论 -
ONNX:开放神经网络交换标准
ONNX(Open Neural Network Exchange)是一种开放的文件格式和生态系统,用于表示深度学习模型。它定义了一组通用的计算图表示、操作符和数据类型,使得不同的深度学习框架能够互相转换和共享模型。通过 ONNX,开发者可以在一个框架中训练模型,然后将其转换为 ONNX 格式,再在另一个框架中加载和部署,无需重新实现整个模型。原创 2025-05-15 08:30:00 · 28 阅读 · 0 评论 -
Plotly:数据可视化的强大工具
Plotly 是一款功能强大的数据可视化工具,提供了丰富的图表类型、交互功能和自定义选项。通过本文的介绍,读者应该对 Plotly 的基本概念、核心功能、使用方法以及实际应用有了较为全面的了解。原创 2025-05-14 09:45:00 · 531 阅读 · 0 评论 -
Pandas:强大的数据处理与分析工具
Pandas 作为 Python 中强大的数据处理与分析工具,提供了灵活、高效的数据结构和丰富的数据分析方法。通过本文的介绍,读者应该对 Pandas 的基本概念、核心数据结构、数据读取与写入、数据清洗与预处理、数据探索与分析以及数据可视化等方面有了较为全面的了解。在实际应用中,Pandas 可以帮助我们快速、准确地处理和分析各种类型的数据,为决策提供有力支持。原创 2025-05-14 07:15:00 · 170 阅读 · 0 评论 -
Transformers (Hugging Face):自然语言处理的革命
HuggingFace Transformers 是一个开源的自然语言处理(NLP)库,提供了对预训练Transformer模型的便捷访问和微调功能。自2019年发布以来,该库迅速成为NLP社区中最受欢迎的工具之一,支持多种编程语言和任务,如文本分类、命名实体识别、问答系统、摘要生成和机器翻译等。原创 2025-05-13 08:30:00 · 29 阅读 · 0 评论 -
XGBoost:梯度提升算法的秘密武器
XGBoost(eXtreme Gradient Boosting)是一个高效、灵活且可扩展的梯度提升库,由陈天奇于2014年开发并开源。它在各类机器学习竞赛中表现优异,尤其在Kaggle比赛中被广泛使用。XGBoost通过优化技术如并行计算、缓存优化和稀疏感知算法,显著提升了处理大规模数据集的效率。原创 2025-05-13 09:00:00 · 142 阅读 · 0 评论 -
Scikit-learn:Python 机器学习库的全面指南
Scikit-learn是Python中广泛使用的机器学习库,提供丰富的工具和算法,支持数据挖掘和数据分析。其核心特点包括统一的API设计、高效的实现、良好的文档和易于扩展性。Scikit-learn适用于多种机器学习任务,如分类、回归、聚类和降维,但不擅长处理深度学习和超大规模数据。通过Pipeline和GridSearchCV等工具,用户可以简化工作流程并进行超参数调优。尽管存在一些局限性,Scikit-learn通过与其他库(如Dask、TensorFlow)的集成,能够满足更复杂的需求。原创 2025-05-12 10:04:35 · 302 阅读 · 0 评论 -
.pt 文件与 .engine 文件的生成及使用
本文详细介绍了 .pt 文件和 .engine 文件的生成及使用方法。.pt 文件是 PyTorch 中保存模型的常用格式,具有灵活性高、易于调试等优点;而 .engine 文件是 NVIDIA TensorRT 引擎文件,专门为高性能推理进行了优化。在实际应用中,我们可以根据不同的需求选择合适的文件格式。随着深度学习技术的不断发展,模型的存储和部署方式也会不断改进,未来可能会出现更加高效、灵活的文件格式和工具。原创 2025-05-07 08:30:00 · 48 阅读 · 0 评论 -
SSD 从入门到精通学习指南
目标检测的任务是在图像或视频中找出所有感兴趣的目标,并为每个目标标注出其所属的类别和对应的位置。传统的目标检测方法通常采用滑动窗口和特征提取的方式,先在图像上以不同的尺度和位置滑动窗口,然后对每个窗口内的图像进行特征提取和分类,这种方法计算量巨大,效率较低。后来发展出了基于深度学习的目标检测算法,大致可分为两阶段和单阶段算法。两阶段算法如 Faster R - CNN 先通过区域建议网络生成可能包含目标的候选区域,再对这些候选区域进行分类和定位;原创 2025-05-07 08:45:00 · 161 阅读 · 0 评论 -
YOLO8之学习指南
在计算机视觉领域,目标检测是一项核心任务,其应用范围广泛,涵盖安防监控、自动驾驶、智能医疗等众多领域。YOLO(You Only Look Once)系列算法凭借其高效、快速的特点,在目标检测领域占据重要地位。YOLO8 作为 YOLO 系列的最新版本,进一步提升了检测精度和速度,同时支持目标检测、图像分割、姿态估计等多任务。原创 2025-05-06 19:40:11 · 219 阅读 · 0 评论 -
YOLO 从入门到精通学习指南
YOLO8 是 Ultralytics 公司在 YOLO 系列基础上开发的一个实时目标检测、图像分割和姿态估计模型,其功能强大且应用广泛。原创 2025-05-06 19:35:49 · 646 阅读 · 0 评论 -
K 近邻(KNN)算法:原理、实现及应用深度剖析
K 近邻(K-Nearest Neighbors,KNN)算法作为一种基础且强大的机器学习算法,在分类与回归任务中都有着广泛的应用。本文将深入探讨 KNN 算法的基本原理,详细介绍其实现步骤,包括距离度量、K 值选择等关键环节。同时,通过 Python 代码示例展示 KNN 算法的具体实现,并分析其在不同领域的应用案例,最后对 KNN 算法的优缺点进行总结,为读者全面理解和应用 KNN 算法提供参考。原创 2025-02-24 09:47:08 · 153 阅读 · 0 评论 -
PID 控制全面解析:原理、NET 与 Python 实现
PID 控制作为一种经典的控制算法,以其简单高效的特点在自动控制领域占据着重要地位。通过对偏差的比例、积分和微分运算,PID 控制器能够有效地对各种被控对象进行精确控制。本文详细介绍了 PID 控制的基本原理、数学模型,以及在.NET 和 Python 环境中的实现方法,并讨论了 PID 参数整定方法和实际应用中的考量因素。随着技术的不断发展,虽然涌现出了许多先进的控制理论和方法,但 PID 控制仍然是工业界和学术界广泛研究和应用的热点。原创 2025-02-17 15:46:45 · 84 阅读 · 0 评论 -
图像分割与 Watershed 算法:原理、Python 实现与.NET 实现
图像分割是图像处理和计算机视觉领域中的关键任务,旨在将图像划分为不同的区域或对象,以便后续分析和理解。Watershed 算法作为一种经典的图像分割方法,基于形态学理论,具有独特的分割原理和优势。本文详细介绍了图像分割的概念、意义和常见方法,深入阐述了 Watershed 算法的原理、步骤和数学基础。同时,分别给出了使用 Python 和.NET 实现 Watershed 算法进行图像分割的详细代码示例和解释,帮助读者全面掌握该算法及其在不同编程环境中的应用。原创 2025-02-13 10:01:45 · 400 阅读 · 0 评论 -
计算机视觉中的边缘检测算法之 Scharr 和 Laplacian 算法
边缘检测是计算机视觉中的重要任务,它对于图像分割、目标识别和特征提取等后续处理步骤起着关键作用。本文深入介绍了 Scharr 和 Laplacian 这两种经典的边缘检测算法,包括它们的原理、数学推导、算法特点以及在 Python 中的实现方法,并通过实验对比分析了这两种算法在不同场景下的性能表现,为计算机视觉领域的从业者和研究者提供了全面而深入的参考。原创 2025-01-02 09:30:00 · 222 阅读 · 0 评论 -
OpenCV 图像处理之形态学转换
侵蚀和扩张是形态学转换的基础操作,侵蚀使物体边界收缩,扩张使物体边界扩张,分别适用于去除噪声和填充孔洞等场景。开运算和闭运算结合了侵蚀和扩张的优点,开运算能去除小物体和噪声并平滑边界,闭运算能填充孔洞和连接物体并保持边界平滑,在图像预处理中广泛应用。形态学梯度突出了物体的边缘轮廓,顶帽运算提取了图像中的明亮小物体和噪声,黑帽运算则用于提取暗区域和孔洞,这些方法在特定的图像处理任务中发挥着重要作用,如边缘检测、微小物体检测和缺陷检测等。原创 2025-01-01 15:51:08 · 655 阅读 · 0 评论 -
OpenCV 中的高斯金字塔和拉普拉斯金字塔:原理、实现与应用
本文详细介绍了 OpenCV 中的高斯金字塔和拉普拉斯金字塔的原理、构建方法以及在图像处理中的应用,并通过 Python 代码实现了这两种金字塔的构建和相关实验。高斯金字塔和拉普拉斯金字塔作为图像多尺度分析的重要工具,为图像处理提供了强大的功能和灵活性。在未来的研究中,随着计算机视觉和图像处理技术的不断发展,这两种金字塔技术有望在更多领域得到应用和拓展。原创 2024-12-31 10:39:53 · 624 阅读 · 0 评论 -
OpenCV中的一些常用方法
分享一些opencv处理图片和视频的常用方法原创 2024-12-29 13:37:48 · 399 阅读 · 0 评论 -
自然语言处理:从入门到精通全指引
自然语言处理(NLP)作为人工智能领域的关键分支,旨在让计算机理解、生成和处理人类语言,近年来取得了令人瞩目的成就,在智能客服、机器翻译、文本分析、语音助手等众多领域发挥着重要作用。从入门到精通自然语言处理,需要系统地学习一系列知识与技能,涵盖编程语言、数学基础、自然语言处理基础技术、机器学习与深度学习算法,以及丰富的实践项目经验积累等。原创 2024-12-08 09:36:26 · 1842 阅读 · 0 评论 -
PyTorch:强大灵活的深度学习框架
从简单的线性回归到复杂的神经网络,从模型的保存和加载到分布式训练,PyTorch 为开发者提供了丰富的工具和功能,使得深度学习的开发变得更加高效和便捷。在这个例子中,我们首先创建了一些数据,然后定义了一个简单的线性回归模型。接着,我们定义了损失函数和优化器,并使用循环进行训练。在每次迭代中,我们计算预测值、损失,然后进行反向传播和参数更新。在这个例子中,我们定义了一个包含卷积层、池化层和全连接层的卷积神经网络。我们首先初始化分布式环境,然后在每个进程中创建模型、优化器和损失函数,并进行训练。原创 2024-10-20 20:46:08 · 695 阅读 · 0 评论 -
OpenTK:探索 3D 图形编程与学习资源
OpenTK 是一个开源的跨平台 C# 库,它封装了 OpenGL、OpenCL 和 OpenAL 等底层图形、计算和音频库。这意味着开发者可以使用 C# 语言轻松地访问这些强大的底层功能,而无需深入了解复杂的底层 API 和不同操作系统的差异。它提供了一系列用于创建窗口、处理输入、绘制 3D 图形、进行数学计算以及处理音频等功能的类和方法。原创 2024-10-18 10:44:26 · 1479 阅读 · 0 评论 -
深入理解 GLSL:从基础到精通
GLSL 是一种类似于 C 语言的编程语言,它在 OpenGL 图形渲染管线中负责处理顶点和片段的着色操作。顶点着色器主要负责处理顶点的位置、颜色、纹理坐标等属性,而片段着色器则负责确定每个像素的颜色。通过编写 GLSL 代码,开发者可以实现各种复杂的图形效果,如光照、阴影、纹理映射、反射等。原创 2024-10-24 11:57:46 · 1232 阅读 · 0 评论 -
OpenCV 简介与在 Python 和 C# 中的使用
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,它提供了丰富的函数和工具,用于处理图像和视频数据。最初由英特尔公司开发,现在由一个开源社区维护和扩展。OpenCV 支持多种操作系统,包括 Windows、Linux 和 Mac OS 等,并且可以与多种编程语言结合使用。原创 2024-10-16 17:49:01 · 1434 阅读 · 0 评论 -
使用 OpenTK 三维引擎开发三维点云图像
使用 OpenTK 三维引擎开发三维点云图像是一个具有挑战性但又充满乐趣和价值的过程。从理解三维点云图像的基础概念,到掌握 OpenTK 的功能和图形渲染管线,再到实际的项目开发中的数据加载、渲染设置、优化与增强等步骤,每个环节都需要开发者投入精力去学习和实践。原创 2024-10-18 10:51:40 · 1247 阅读 · 0 评论 -
计算机视觉:学习指南
计算机视觉作为人工智能领域的一个重要分支,致力于让计算机理解和解释视觉信息,近年来取得了令人瞩目的进展,广泛应用于安防监控、自动驾驶、图像编辑、医学影像分析等众多领域。从入门到精通计算机视觉需要系统地学习一系列知识和技能,涵盖数学基础、编程语言、图像处理基础、机器学习与深度学习算法以及各种计算机视觉应用技术等。原创 2024-12-08 09:26:02 · 1839 阅读 · 0 评论 -
从入门到精通学习 OpenCV
OpenCV(Open Source Computer Vision Library)是一个强大的跨平台计算机视觉和机器学习软件库。它拥有丰富的功能和算法,被广泛应用于图像处理、视频分析、模式识别、机器学习等领域。无论是科研、工业检测、自动驾驶,还是日常生活中的图像和视频处理,OpenCV 都发挥着重要的作用。原创 2024-11-16 08:31:25 · 1816 阅读 · 0 评论