5. 最长回文子串-LeetCode(Java)

目录

最长回文子串-LeetCode(Java)

分析:

一.暴力解法(超时)

1.思路:

2.代码:

二.中心扩展算法

1.思路

2.代码

 三.动态规划

1.思路

2.代码

 四.Manacher算法

1.思路

2.代码


最长回文子串-LeetCode(Java)

题目:5. 最长回文子串

给你一个字符串 s,找到 s 中最长的回文子串。

如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

提示:

  • 1 <= s.length <= 1000
  • s 仅由数字和英文字母组成

分析:

一.暴力解法(超时)
1.思路:

截取每一段子串,然后判断它是不是回文串,如果是的话,就更新最长回文子串。

2.代码:
class Solution {
    // 辅助函数,用于检查字符串 s 中从索引 begin 到 end 的子串是否为回文
    boolean isPalindrome(String s, int begin, int end) {
        while (begin <= end) {
            // 如果两端的字符不同,则不是回文
            if (s.charAt(begin) != s.charAt(end))
                return false;
            // 向中间移动
            begin++;
            end--;
        }
        // 如果所有字符都相同,则是回文
        return true;
    }

    // 主函数,用于找出字符串 s 中的最长回文子串
    public String longestPalindrome(String s) {
        int ansl = 0, ansr = 0; // 存储最长回文子串的起始和结束索引
        // 外层循环遍历子串的起始位置
        for (int i = 0; i < s.length(); i++)
            // 内层循环遍历子串的结束位置
            for (int j = i; j < s.length(); j++)
                // 检查子串是否是回文
                if (isPalindrome(s, i, j)) {
                    // 如果找到更长的回文子串,则更新最长回文子串的索引
                    if (j - i > ansr - ansl) {
                        ansr = j;
                        ansl = i;
                    }
                }
        // 返回最长回文子串
        return s.substring(ansl, ansr + 1);
    }
}

时间复杂度:O(n^3)

二.中心扩展算法
1.思路

从每个可能的中心开始,尽可能向两边扩展,当两个方向的字母不再相同时,我们就找到了以该中心为起点的最长回文串。

2.代码
class Solution {
    public String longestPalindrome(String s) {
        if(s == null || s.length()<1)
            return "";
        int start = 0;//最长回文子串的起始位置
        int end =0;//最长会问子串的结束位置
        for (int i = 0 ;i < s.length();i++){
            int len1 = expandAroundCenter(s,i,i);//以单个字符为中心的回文长度
            int len2 = expandAroundCenter(s,i,i+1);//以两个字符之间为中心的回文长度
            int len = Math.max(len1,len2);//当前找到的最长回文长度
            if (len > end -start){//更新最长回文子串的位置
                start = i - (len - 1) / 2;
                end = i + len / 2;
            }
        }
        return s.substring(start,end +1);//返回最长回文子串
    }

    //中心扩展
    private int expandAroundCenter(String s,int left ,int right){
        while(left >=0 && right <s.length() && s.charAt(left) == s.charAt(right)){
            left--;//左拓展
            right++;//右拓展
        }
        return right - left - 1;//返回拓展后的回文长度

    }
}

时间复杂度:O(n^2)

 三.动态规划

来自官方题解

1.思路

2.代码
public class Solution {

    public String longestPalindrome(String s) {
        int len = s.length();
        if (len < 2) {
            return s;
        }

        int maxLen = 1;
        int begin = 0;
        // dp[i][j] 表示 s[i..j] 是否是回文串
        boolean[][] dp = new boolean[len][len];
        // 初始化:所有长度为 1 的子串都是回文串
        for (int i = 0; i < len; i++) {
            dp[i][i] = true;
        }

        char[] charArray = s.toCharArray();
        // 递推开始
        // 先枚举子串长度
        for (int L = 2; L <= len; L++) {
            // 枚举左边界,左边界的上限设置可以宽松一些
            for (int i = 0; i < len; i++) {
                // 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
                int j = L + i - 1;
                // 如果右边界越界,就可以退出当前循环
                if (j >= len) {
                    break;
                }

                if (charArray[i] != charArray[j]) {
                    dp[i][j] = false;
                } else {
                    if (j - i < 3) {
                        dp[i][j] = true;
                    } else {
                        dp[i][j] = dp[i + 1][j - 1];
                    }
                }

                // 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
                if (dp[i][j] && j - i + 1 > maxLen) {
                    maxLen = j - i + 1;
                    begin = i;
                }
            }
        }
        return s.substring(begin, begin + maxLen);
    }
}

复杂度分析

    时间复杂度:O(n^2),其中 n 是字符串的长度。动态规划的状态总数为O(n^2),对于每个状态,我们需要转移的时间为O(1)。

    空间复杂度:O(n^2),即存储动态规划状态需要的空间。

 四.Manacher算法
1.思路

        马拉车算法 Manacher‘s Algorithm 是用来查找一个字符串的最长回文子串的线性方法,由一个叫 Manacher 的人在1975年发明,这个方法的最大贡献是在于将时间复杂度提升到了线性。
        Manacher算法会先在每个字符之间插入一个未在字符串中出现过的字符(如#),再利用回文半径和回文直径,依次匹配,再通过判断i(当前位置)与R(回文半径)的关系进行不同的分支操作,接着继续遍历直到遍历完整个字符串。
        参阅吴师兄这篇内容:老司机开车,教会女朋友什么是「马拉车算法」_吴师兄学算法

2.代码
public class Solution {

    public String longestPalindrome(String s) {
        int len = s.length();
        if (len < 2) {
            return s;
        }
        String str = addBoundaries(s, '#');
        int sLen = 2 * len + 1;
        int maxLen = 1;

        int start = 0;
        for (int i = 0; i < sLen; i++) {
            int curLen = centerSpread(str, i);
            if (curLen > maxLen) {
                maxLen = curLen;
                start = (i - maxLen) / 2;
            }
        }
        return s.substring(start, start + maxLen);
    }

    private int centerSpread(String s, int center) {
        // left = right 的时候,此时回文中心是一个空隙,回文串的长度是奇数
        // right = left + 1 的时候,此时回文中心是任意一个字符,回文串的长度是偶数
        int len = s.length();
        int i = center - 1;
        int j = center + 1;
        int step = 0;
        while (i >= 0 && j < len && s.charAt(i) == s.charAt(j)) {
            i--;
            j++;
            step++;
        }
        return step;
    }


    /**
     * 创建预处理字符串
     *
     * @param s      原始字符串
     * @param divide 分隔字符
     * @return 使用分隔字符处理以后得到的字符串
     */
    private String addBoundaries(String s, char divide) {
        int len = s.length();
        if (len == 0) {
            return "";
        }
        if (s.indexOf(divide) != -1) {
            throw new IllegalArgumentException("参数错误,您传递的分割字符,在输入字符串中存在!");
        }
        StringBuilder stringBuilder = new StringBuilder();
        for (int i = 0; i < len; i++) {
            stringBuilder.append(divide);
            stringBuilder.append(s.charAt(i));
        }
        stringBuilder.append(divide);
        return stringBuilder.toString();
    }
}
  • 时间复杂度:O(N2),这里 N 是原始字符串的长度。新字符串的长度是 2 * N + 1,不计系数与常数项,因此时间复杂度仍为 O(N2)
  • 空间复杂度:O(N)
最长回文子串是指一个字符串中的最长回文子串。在 Java 中,可以使用动态规划的方法来解决这个问题。 首先,定义一个二维数组 dp[][],其中 dp[i][j] 表示字符串从索引 i 到 j 的子串是否是回文子串。初始化时,将所有 dp[i][i] 设置为 true,表示单个字符是回文子串。 然后,通过遍历字符串的长度和起始索引来更新 dp[][] 数组。具体的更新规则如下: 1. 当 s.charAt(i) == s.charAt(j) 且 (j - i <= 2 || dp[i+1][j-1] == true) 时,dp[i][j] 也为 true。这意味着如果当前字符相等,并且子串长度小于等于2或者去掉首尾字符后的子串是回文子串,则当前子串也是回文子串。 2. 在更新 dp[][] 数组的过程中,记录最长回文子串的起始索引和长度。 以下是使用动态规划解决最长回文子串问题的 Java 代码示例: ```java public class LongestPalindromeSubstring { public static String longestPalindrome(String s) { int n = s.length(); boolean[][] dp = new boolean[n][n]; int maxLength = 1; int start = 0; // 初始化单个字符为回文子串 for (int i = 0; i < n; i++) { dp[i][i] = true; } // 更新 dp[][] 数组并记录最长回文子串的起始索引和长度 for (int len = 2; len <= n; len++) { for (int i = 0; i <= n - len; i++) { int j = i + len - 1; if (s.charAt(i) == s.charAt(j) && (len <= 2 || dp[i+1][j-1])) { dp[i][j] = true; if (len > maxLength) { maxLength = len; start = i; } } } } return s.substring(start, start + maxLength); } public static void main(String[] args) { String s = "babad"; String longestPalindrome = longestPalindrome(s); System.out.println("最长回文子串为: " + longestPalindrome); } } ``` 运行上述代码,输出结果为: ``` 最长回文子串为: bab ``` 以上就是使用动态规划解决最长回文子串问题的 Java 实现方法。希望能对你有所帮助!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值