Alice 和 Bob 打算给花园里的 n
株植物浇水。植物排成一行,从左到右进行标记,编号从 0
到 n - 1
。其中,第 i
株植物的位置是 x = i
。
每一株植物都需要浇特定量的水。Alice 和 Bob 每人有一个水罐,最初是满的 。他们按下面描述的方式完成浇水:
·
Alice 按 从左到右 的顺序给植物浇水,从植物 0
开始。Bob 按 从右到左 的顺序给植物浇水,从植物 n - 1
开始。他们 同时 给植物浇水。
·
无论需要多少水,为每株植物浇水所需的时间都是相同的。
·
如果 Alice/Bob 水罐中的水足以 完全 灌溉植物,他们 必须 给植物浇水。否则,他们 首先(立即)重新装满罐子,然后给植物浇水。
·
如果 Alice 和 Bob 到达同一株植物,那么当前水罐中水 更多 的人会给这株植物浇水。如果他俩水量相同,那么 Alice 会给这株植物浇水。
给你一个下标从 0 开始的整数数组 plants
,数组由 n
个整数组成。其中,plants[i]
为第 i
株植物需要的水量。另有两个整数 capacityA
和 capacityB
分别表示 Alice 和 Bob 水罐的容量。返回两人浇灌所有植物过程中重新灌满水罐的 次数 。
示例 1:
输入:plants = [2,2,3,3], capacityA = 5, capacityB = 5
输出:1
解释:
- 最初,Alice 和 Bob 的水罐中各有 5 单元水。
- Alice 给植物 0 浇水,Bob 给植物 3 浇水。
- Alice 和 Bob 现在分别剩下 3 单元和 2 单元水。
- Alice 有足够的水给植物 1 ,所以她直接浇水。Bob 的水不够给植物 2 ,所以他先重新装满水,再浇水。
所以,两人浇灌所有植物过程中重新灌满水罐的次数 = 0 + 0 + 1 + 0 = 1 。
示例 2:
输入:plants = [2,2,3,3], capacityA = 3, capacityB = 4
输出:2
解释:
- 最初,Alice 的水罐中有 3 单元水,Bob 的水罐中有 4 单元水。
- Alice 给植物 0 浇水,Bob 给植物 3 浇水。
- Alice 和 Bob 现在都只有 1 单元水,并分别需要给植物 1 和植物 2 浇水。
- 由于他们的水量均不足以浇水,所以他们重新灌满水罐再进行浇水。
所以,两人浇灌所有植物过程中重新灌满水罐的次数 = 0 + 1 + 1 + 0 = 2 。
示例 3:
输入:plants = [5], capacityA = 10, capacityB = 8
输出:0
解释:
- 只有一株植物
- Alice 的水罐有 10 单元水,Bob 的水罐有 8 单元水。因此 Alice 的水罐中水更多,她会给这株植物浇水。
所以,两人浇灌所有植物过程中重新灌满水罐的次数 = 0 。
提示:
·n == plants.length
·1 <= n <= 105
·1 <= plants[i] <= 106
·max(plants[i]) <= capacityA, capacityB <= 109
题目大意:计算两人分别从两边以相同速度往中间给所有植物浇水所需灌水的次数。
分析:本题实则简单题,用双指针按照题意进行模拟即可。
class Solution {
public:
int minimumRefill(vector<int>& plants, int capacityA, int capacityB) {
int waterA=capacityA,waterB=capacityB,N=plants.size(),res=0;
int l,r;
for(l=0,r=N-1;l<r;++l,--r){
if(plants[l]>waterA){
++res;
waterA=capacityA-plants[l];
}
else waterA-=plants[l];
if(plants[r]>waterB){
++res;
waterB=capacityB-plants[r];
}
else waterB-=plants[r];
}
return res+(l==r? plants[l]>max(waterA,waterB):0);
}
};