数据分析报告Uniqlo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

### Python 数据分析案例:优衣库项目实例教程 #### 使用Python进行优衣库销售数据分析 为了展示如何利用Python进行与优衣库相关的数据分析,下面提供了一个假设性的案例研究。此案例旨在帮助理解如何通过Python及其相关库(如Pandas、Matplotlib 和 Seaborn)来探索和分析零售行业中的实际业务问题。 #### 加载并预处理数据集 首先,加载必要的库,并读取包含优衣库销售记录的数据文件: ```python import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler # 假设有一个CSV文件 'uniqlo_sales.csv' df = pd.read_csv('uniqlo_sales.csv') print(df.head()) ``` 对于缺失值的处理可以采用`SimpleImputer`类[^2];标准化数值特征则可借助于`StandardScaler`对象。 #### 探索性数据分析 (EDA) 绘制不同类别商品销售额分布可以帮助识别哪些产品线表现最佳: ```python plt.figure(figsize=(10,6)) sns.barplot(x="category", y="sales_amount", data=df) plt.title('Sales Amount by Product Category') plt.show() ``` 此外,还可以查看顾客评分等级对支付意愿的影响情况: ```python plt.figure(figsize=(20,8)) sns.countplot(x='paid', hue='rating_level', data=df) plt.title('Payment Status vs Customer Rating Level') plt.show() ``` 上述表有助于揭示潜在模式或趋势,从而指导后续决策制定过程[^3]。 #### 构建预测模型 如果目标是从历史交易记录中挖掘规律以支持未来营销活动,则可能需要构建更复杂的统计学或机器学习模型。例如,简单线性回归可用于估计促销折扣力度与销量增长之间的关系;而逻辑回归则适合评估特定因素是否会影响客户购买行为的概率。 然而,在决定具体方法之前,应当仔细考虑所拥有的数据特性以及期望获得的结果类型[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值