数据结构与算法之多路查找树(2-3树、2-3-4树、B树、B+树

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
img

正文

插入原理

对于2-3树的插入来说,与平衡二叉树相同,插入操作一定是发生在叶子节点上,并且节点的插入和删除都有可能导致不平衡的情况发生,在插入和删除节点时也是需要动态维持平衡的,但维持平衡的策略和AVL树是不一样的。

AVL树向下添加节点之后通过旋转来恢复平衡,而2-3树是通过节点向上分裂来维持平衡的,也就是说2-3树插入元素的过程中层级是向上增加的,因此不会导致叶子节点不在同一层级的现象发生,也就不需要旋转了。

三种插入情况

1)对于空树,插入一个2节点即可;

2)插入节点到一个2节点的叶子上。由于本身就只有一个元素,所以只需要将其升级为3节点即可(如:插入3)。

在这里插入图片描述

3)插入节点到一个3节点的叶子上。因为3节点本身最大容量,因此需要拆分,且将树中两元素或者插入元素的三者中选择其一向上移动一层。

分为三种情况:

  • 升级父节点(插入5)

在这里插入图片描述

  • 升级根节点(插入11)

在这里插入图片描述

  • 增加树高度(插入2,从下往上拆)

在这里插入图片描述

2-3树删除的操作


删除原理:2-3树的删除也分为三种情况,与插入相反。

三种删除情况

1)所删元素位于一个3节点的叶子节点上,直接删除,不会影响树结构(如:删除9)

在这里插入图片描述

2)所删元素位于一个2节点上,直接删除,破坏树结构

在这里插入图片描述

分为四种情况:

  • 此节点双亲也是2节点,且拥有一个3节点的右孩子(如:删除1)

在这里插入图片描述

  • 此节点的双亲是2节点,它右孩子也是2节点(如:删除4)

在这里插入图片描述

  • 此节点的双亲是3节点(如:删除10)

在这里插入图片描述

  • 当前树是一个满二叉树,降低树高(如:删除8)

在这里插入图片描述

3)所删元素位于非叶子的分支节点。此时按树中序遍历得到此元素的前驱或后续元素,补位

两种情况:

  • 分支节点是2节点(如:删除4)

在这里插入图片描述

  • 分支节点是3节点(如:删除12)

在这里插入图片描述

2-3-4树

========================================================================

2-3-4树是2-3树的扩展,包括了 4 节点的使用,一个 4 节点包含小中大三个元素和四个孩子(或没有孩子)

2-3-4树的插入操作


1)如果待插入的节点不是 4 节点,则直接插入即可

2)如果待插入的节点是 4 节点,则先把新节点临时插入进去变成 5 节点,然后对 5 节点进行向上分裂、合并,5 节点分裂成两个 2 节点(5 节点最小的元素、5 节点第二个元素)、1个 3 节点(5 节点后两个元素),然后将分裂之后的第2个 2 节点向上合并到父节点中,然后把父节点作为插入元素之后的当前节点,重复(1)、(2)步骤,直到满足2-3-4树的定义性质

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2-3-4树的删除操作


删除顺序使1,6,3,4,5,2,9

在这里插入图片描述

B树

====================================================================

B树(BTree)是一种平衡的多路查找树,2-3树和2-3-4树都是B树的特例。

我们把结点最大的孩子树目称为B树的阶,因此,2-3树是3阶B树,2-3-4树是4阶B树

在这里插入图片描述

如下图,比如说要查找7,首先从外存读取得到根节点3,5,8三个元素,发现7不在,但是5、8之间,因此就通过A2再读取外存的2,6,7节点找到结束。

在这里插入图片描述

B树的数据结构为内外存的数据交互准备的。当要处理的数据很大时,无法一次全部装入内存。这时对B树调整,使得B树的阶数与硬盘存储的页面大小相匹配。比如说一棵B树的阶为1001(即1个节点包含1000个关键字),高度为2(从0开始),它可以存储超过10亿个关键字(1001x1001x1000+1001x1000+1000),只要让根节点持久的保留在内存中,那么在这颗树上,寻找某一个关键字至多需要两次硬盘的读取即可。

对于n个关键字的m阶B树,最坏情况查找次数计算

第一层至少1个节点,第二层至少2个节点,由于除根节点外每个分支节点至少有⌈m/2⌉棵子树,则第三层至少有2x⌈m/2⌉个节点。。。这样第k+1层至少有2x(⌈m/2⌉)^(k-1),实际上,k+1层的节点就是叶子节点。若m阶B树有n个关键字,那么当你找到叶子节点,其实也就等于查找不成功的节点为n+1,因此

n+1>=2x(⌈m/2⌉)^(k-1),即

在这里插入图片描述

在含有n个关键字的B树上查找时,从根节点到关键字节点的路径上涉及的节点数不超多在这里插入图片描述

B+树

=====================================================================

B+树可以说是B树的升级版,相对于B树来说B+树更充分的利用了节点的空间,让查询速度更加稳定,其速度完全接近于二分法查找。大部分文件系统和数据均采用B+树来实现索引结构。

下图B树,我们要遍历它,假设每个节点都属于硬盘的不同页面,我们为了中序遍历所有的元素,页面2-页面1-页面3-页面1-页面4-页面1-页面5,页面1遍历了3次,而且我们每经过节点遍历时,都会对节点中的元素进行一次遍历

在这里插入图片描述

B+树是应文件系统所需而出的一种B树的变形树,在B树中,每一个元素树中只出现一次,而B+树中,出现在分支节点中的元素会被当做他们在该分支节点位置的中序后继者(叶子节点)中再次列出。另外,每一个叶子节点都会保存一个指向后一叶子节点的指针。

下图就是B+树,灰色关键字,在根节点出现,在叶子节点中再次列出

在这里插入图片描述

一棵m阶的B+树和m阶的B树的差异在于

  • 有n棵子树的非叶节点中包含有n个关键字(B树中是n-1个关键字),但是每个关键字不保存数据,只用来保存叶子节点相同关键字的索引,所有数据都保存在叶子节点。(此处,对于非叶节点的m颗子树和n个关键字的关系,mysql的索引结构似乎是m=n+1,而不是上面的m=n)

  • 所有的非叶节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素。

  • 所有的叶子节点包含全部关键字的信息,及指向含这些关键字所指向的具体磁盘记录的指针data,并且每一个叶子节点带有指向下一个相邻的叶节点指针,形成链表

最后

🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
thon、前端等等。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-FZmdPr8n-1713253335200)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值