判断是否为质数的超级优化 C++语言(超详细)

本文探讨了如何利用质数概念优化素数判定算法,通过舍弃不必要的循环和利用孪生素数猜想减少搜索范围,显著提高代码效率。介绍了从基本的暴力循环到利用数学原理,再到双数侧判断的优化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先我们要知道质数的概念:

质数(prime number)又称素数,有无限个。质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。

知道了质数的概念,我们就可以大胆的说:“老师,我可以跑暴力”————》开个for循环从2怼到n-1,如果n被其整除那么就不是质数,反正是质数。

还是老话:“暴力解决不了所以问题,就比如时间上可能会很慢(因为你是在完全借助质数的定义跑循环)。”

所以要 优化!优化! 优化!

#include<iostream>
#include<cmath>
using namespace std;
bool Prime_Numbers(int x)
{
	int tmp = sqrt(x);
	for(int i = 2;i<=tmp;i++)
	{
		if(x%i==0)
		{
			return 0;
		}
	}
	return 1;
}
int main()
{
	int num;
	cin>>num;
	if(Prime_Numbers(num))
	{
		cout<<"Yes"<<endl;
	}
	else
	{
		cout<<"No"<<endl;
	}
} 

假如一个数N是合数,它有一个约数a,a×b=N
则a、b两个数中必有一个大于或等于根号N,一个小于或等于根号N。
因此,只要小于或等于根号N的数(1除外)不能整除N,则N一定是素数。

通过数学推证,我们只需要从2跑到sqrt(n)就可以了!

这样代码运行速度就得到很大幅度的提升!

但总有人追求更快的运行速度,不过还真的可以优化再优化!!!

 首先我们要先理解一下——》孪生素数猜想(twin primes)

                                                                                                     (以上两张图片来自百度百科)

我们无需把 孪生素数猜想 理解透彻,

我们只需要知道——》大于3的素数只分布在6n-1和6n+1两数列中。(n非0自然数)

了解了这个猜想,我们就可以进行代码优化了

#include<iostream>
#include<cmath>
using namespace std;
bool Prime_Numbers(int x)
{
	if (x == 2 || x == 3)//将两个小数额外处理 
	{
		return 1;
	}
	if (x % 6 != 1 && x % 6 != 5)//不在6的倍数两侧的一定不是质数
	{
		return 0;
	}
	//在6的倍数两侧的数也不一定是质数
	int tmp = sqrt(x);
	for (int i = 5; i <= tmp; i += 6)
	{
		if (x % i == 0 || x % (i + 2) == 0)
		{
			return 0;
		}
	}
	//排除所有剩余的是素数
	return 1;
}

int main()
{
	int num;
		cin >> num;
		if (Prime_Numbers(num))
		{
			cout << "Yes" << endl;
		}
		else
		{
			cout << "No" << endl;
		}
	return 0;
}

是不是感觉代码边长了很多?

但速度也真真实实变快了很多!!!

注意:

在6的倍数的两侧的数,不一定是素数(比如6*6的左侧——》35就不是素数)!

一定要明白必要条件与充要条件的区别!!!

所以我们还是要跑个循环,但这次我们是 i+=6 ,不再是单纯无脑的i++了(这也是速度提升的关键)。

当然我们也不要忘记单独判断一下 2 与 3这两个素数。

如果这篇文章对您有帮助,请留下您免费的赞,这是对我最大的帮助!

也希望大佬们进行纠错与指点,我定会虚心接受!

在最后,

再次感谢您的阅读!

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Joanh_Lan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值